

Village of Lemont

Feasibility/Cost Study: Water Supply Alternatives

February 2022

HR Green Project No: 211371

HR Green, Inc. 1391 Corporate Drive Suite 203 McHenry, IL 60050

Table of Contents

I. Introduction	1
II. Background	1
II.A. Existing Conditions	1
II.B. Future Conditions	2
II.C. Water Quality	2
III. Water Supply Alternatives	4
III.A. Alternative #1: Illinois American Water Company System	4
III.A.1 Capacity Analysis	4
III.A.2 Proposed Connection Point	7
III.A.3 Cost Assessment	7
III.B. Alternative #2: Joliet Regional Water Commission1	1
III.B.1 Capacity Analysis	1
III.B.2 Proposed Connection Point1	1
III.B.3 Cost Assessment	1
III.C. Alternative #3: Maintain Existing Groundwater System1	6
III.C.1 Capacity Analysis	6
III.C.2 Cost Assessment	8
III.D. Lake Michigan Source Water Considerations 2	0
III.D.1 Corrosion Control Study	0
III.D.2 IDNR Lake Michigan Allocation Requirements2	0
III.D.3 Water Quality Comparison	0
IV. Financial Summary	2
V. Water Alternative Comparison	4
VI. Conclusion	5
VII. References	6

Table of Appendices

Appendix 1: Map of Potential Water Connection with Illinois American Water Appendix 2: Map of Potential Water Connection with Joliet RWC Appendix 3: Technical Memorandum for Hydrogeologic Evaluation prepared by LRE Water, Inc.

I. Introduction

In 2020, the Illinois State Water Survey (ISWS) published a report to the Southwest Water Planning Group (SWPG) which indicated that the Cambrian-Ordovician aquifer is rapidly depleting at unsustainable rates. According to the study, the communities within the southwestern suburbs of Illinois may be at risk of not meeting their drinking water demands in the coming decades. In response, the City of Joliet has initiated efforts to establish a southwest suburban regional water commission (RWC) so that numerous municipalities could work together to establish the infrastructure necessary to bring Lake Michigan water to the area. To adequately size the future system, the City of Joliet has requested for all communities interested in joining the regional commission to sign a preliminary agreement by February 28, 2022.

The Village of Lemont hired HR Green to complete a feasibility and cost study to assess alternatives for the Village's future water supply. According to the ISWS study, the Village of Lemont's water supply may be at risk due to unsustainable aquifer withdrawal dates. However, the Village is interested in taking a deeper dive to better understand the risk level associated with staying on the existing groundwater wells. Additionally, the Village requested for HR Green to assess the possibility of obtaining Lake Michigan water from either Illinois American Water or the proposed Joliet RWC. This report evaluates the feasibility and costs associated with the three water supply alternatives and offers guidance to help the Village make an informed decision to meet current and future water needs.

II. Background

This section provides background on the Village of Lemont's existing water system, including future water demand projections and the system's water quality.

II.A. Existing Conditions

The existing water system in the Village of Lemont consists of the following major assets:

- Four deep wells
- One emergency shallow well
- One 500,000 gallon storage reservoir
- One 750,000 gallon elevated storage tank
- One 300,000 gallon elevated storage tank
- Three booster pumps
- 104 miles of watermain ranging in size from 3 inches to 16 inches in diameter
- Approximately 1,614 fire hydrants and 800 valves in the water distribution system
- 6,038 service connections

Table 1 provides the Village's well depths and capacities. Approximately 99.95% of the Village's water is obtained from the Cambrian-Ordovician aquifer (deep sandstone aquifer). The deep wells have a capacity of 4.9 million gallons per day (MGD). The Village also has one shallow well (Well 2) which is considered an emergency well. The total capacity for all wells is approximately 5.3 MGD.

Village of Lemont Well Information			
Well Number	Capacity (MGD)		
2 (Emergency Well)	238	250	0.4
3	1,640	700	1.0
4	1,660	700	1.0
5	1,630	1,000	1.4
6	1,665	1,000	1.4
T	otal	3,650	5.3

TABLE 1: VILLAGE OF LEMONT WELL INFORMATION

II.B. Future Conditions

Table 2 provides the Village of Lemont's current and future projections for average day and maximum day demands. The projected water demands are based on the anticipated population growth within the Village in the next 40 years.

Current and Future Demand Projections					
Year	Population	Average Day Demand (MGD) [1]	Maximum Day Demand (MGD) [2]		
2020	17,629	1.61	2.74		
2030	20,500	1.85	3.14		
2040	24,000	2.16	3.67		
2050	27,500	2.48	4.21		
2060	31,000	2.79	4.74		
Notes:					
[1] Assumes 90 gallons per capita per day					

TABLE 2: CURRENT AND FUTURE DEMAND PROJECTIONS

[2] Assumes 1.7 peaking factor

II.C. Water Quality

The Village of Lemont's water quality information is released to the public annually in the consumer confidence report (CCR), as required by the Illinois Environmental Protection Agency (IEPA). Table 3 provides the Village of Lemont's 2020 water quality data in comparison to national drinking water regulations established by the United States Environmental Protection Agency (USEPA). Primary drinking regulations are legally enforceable goals and limits to protect public health. Secondary drinking regulations are non-enforceable guidelines that are recommended by the USEPA to minimize cosmetic effects (skin or tooth discoloration) and aesthetic effects (odor, taste, color)¹. Based on the Village's CCR, the existing drinking water supply's contaminant levels are below the maximum contaminant levels required by the USEPA.

TABLE 3: VILLAGE OF LEMONT'S EXISTING WATER QUALITY INFORMATION

Water Quality Information				
	Village of Lemont (2020 CCR)	USEPA Drinking Water Regulations		
Contaminant	Highest Level Detected	Primary Maximum Contaminant Level Goal (MCLG)	Primary Maximum Contaminant Level (MCL)	Secondary Maximum Contaminant Level
Total Coliform Bacteria (% positive/month)	0%	0	5%	N/A
Fecal Coliform and E. Coli (# positive/month)	0	0	0	N/A
Chlorine (mg/L)	0.7	4	4	N/A
Arsenic (ug/L)	1.9	0	10	N/A
Barium (mg/L)	0.0015	2	2	N/A
Copper (mg/L)	0.16 (90th percentile)	1.3	Action Level = 1.3	1
Lead (mg/L)	4.4 (90th percentile)	0	Action Level = 15	N/A
Fluoride (mg/L)	1.26	4	4	2
Iron (mg/L)	0.026	N/A	1	0.3
Sodium (mg/L)	210	N/A	N/A	N/A
Sulfate (mg/L)	130	N/A	N/A	250
Zinc (mg/L)	0.017	5	5	5
Combined Radium 226/228 (pCi/L)	1	0	5	N/A
Gross alpha excluding radon and uranium (pCi/L)	5	0	15	N/A
Total Nitrate & Nitrite [as nitrogen] (mg/L)	Below detectable levels	10	10	N/A
TTHMs [Total Trihalomethanes] (ug/L)	Below detectable levels	N/A	80	N/A
HAA5 [Haloacetic Acids] (ug/L)	Below detectable levels	N/A	60	N/A
Notes:				
mg/L	milligrams per liter			
ug/L	micrograms per liter			
pCi/L	picocuries per liter (a measure of radioactivity)			
Maximum Contaminant Level Goal	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.			
Maximum Contaminant Level	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration			

III. Water Supply Alternatives

This section provides a feasibility assessment for the three water supply alternatives: 1) Illinois American Water Company System, 2) Joliet RWC, and 3) maintaining the existing groundwater system. This section also provides discussion on additional considerations that must be accounted for when switching the water source from groundwater to Lake Michigan water.

III.A. Alternative #1: Illinois American Water Company System

The Illinois American Water Company (ILAWC) owns several systems in the area which deliver Lake Michigan Water to numerous communities, including Homer Glen, Bolingbrook, Santa Fe, and Plainfield. The water source is obtained from the Village of Bedford Park, which purchases water from the City of Chicago. A 54-inch pipeline from the Village of Bedford Park routes water to two 5 million gallon ground storage tanks at the ILAWC-owned Grant Road Booster Station. This booster station is located to the northeast of the Village of Lemont. From this booster station, ILAWC routes water through a 42-inch pipeline to the west and through a 36-inch pipeline to the south. The 36-inch pipeline is located within ComEd right-of-way just west of Bell Road and currently only services the Village of Homer Glen. If the Village of Lemont considers purchasing water from ILAWC, the 36-inch pipeline would be the connection pipeline.

III.A.1 Capacity Analysis

In August 2021, ILAWC completed a Lake Water Delivery Analysis to assess whether servicing the Village of Lemont is feasible from a capacity standpoint. The system was assessed at three different locations:

- 1. 54-inch pipeline from Bedford Park to Grant Road Booster Station
- 2. 36-inch pipeline from Grant Road Booster Station to Homer Glen connection point (151st Street)
- 3. Grant Road Booster Station

At this time, the 54-inch pipeline from Bedford Park has sufficient capacity to service the Village of Lemont. The 54-inch has a total capacity of 57 MGD. Meanwhile, the projected maximum day demands vary depending on the quantity of customers that ILAWC will have in the future. Figure 1 summarizes ILAWC's 54-inch pipe capacity assessment. If the ILAWC maintains services with all of its existing customers and develops water service agreements with three additional future customers (Lemont, Shorewood, and Oswego), the system will have sufficient capacity through 2050. However, if ILAWC develops water service agreements with five future customers (Lemont, Shorewood, and Oswego), the system will be reached by 2045. It should be noted that many of these potential customers are exploring other water service options. In fact, according to recent publications, Oswego, Montgomery, and Yorkville are joining the DuPage Water Commission². Therefore, the 54-inch pipeline should have sufficient capacity unless other communities choose to join ILAWC in the future. ILAWC has not identified capacity improvements for the 54-inch at this time. Note that ILAWC only assessed the capacity for communities that expressed interest in a water service agreement with ILAWC to date. In the future there may be other communities that express interest, especially with the Joliet RWC's pressure to commit to an agreement by the end of February 2022.

FIGURE 1: 54-INCH PIPELINE CAPACITY ANALYSIS FOR VARIOUS CUSTOMER SCENARIOS. EXHIBIT PROVIDED BY ILAWC IN 2021 DELIVERY ANALYSIS FOR VILLAGE OF LEMONT (FIGURE FROM ILAWC'S LAKE WATER DELIVERY ANALYSIS FOR VILLAGE OF LEMONT).

According to the ILAWC assessment, the 36-inch pipeline servicing Homer Glen has sufficient capacity to service the Village of Lemont. Figure 2 summarizes ILAWC's 36-inch pipe capacity assessment. The 36-inch has a capacity of 23.5 MGD, while the projected maximum day demands for Homer Glen and Lemont combined are expected to be between 10 to 11 MGD by 2050. ILAWC does not anticipate additional customers for the 36-inch pipeline at this time. The 36-inch was constructed in 2001 and consists of prestressed concrete cylinder pipe (PCCP). ILAWC has recently completed a condition assessment for the 36-inch pipeline and found that the pipe is in "very good" to "excellent condition." PCCP mains typically have a service life of approximately 50 years or longer depending on the pipe's operating conditions³. Therefore, it is expected that the 36-inch pipe will likely need to be replaced in approximately 29 years.

FIGURE 2: 36-INCH PIPELINE CAPACITY ANALYSIS FOR VARIOUS CUSTOMER SCENARIOS. EXHIBIT PROVIDED BY ILAWC IN 2021 DELIVERY ANALYSIS FOR VILLAGE OF LEMONT (FIGURE FROM ILAWC'S LAKE WATER DELIVERY ANALYSIS FOR VILLAGE OF LEMONT).

The Grant Road Booster Station is expected to require pump improvements to meet the projected future demands. The booster station currently has five pumps. The quantity of pumps requiring replacement will vary depending on how many new customers develop water service agreements with ILAWC. Potential pump replacement scenarios and timelines are provided in Table 4. If the Village of Lemont develops an agreement with ILAWC, Pump 5 would have to be replaced by 2030 and Pump 2 would have to be replaced by 2037. Additional pump replacement may be needed if more customers join ILAWC. The capital costs for pump replacement would be paid for by ILAWC and would result in adjustments to water rates. According to ILAWC, pump replacement would have a limited impact on rates since the capital cost would be spread across the entire customer group. Note that ILAWC to date; other communities may express interest in joining ILAWC in the future, which may require adjustments to the pump replacement timelines.

Potential Pump Improvements For Various Future Customer Scenarios			
Year	Existing Customers	Existing + Lemont	Existing + Lemont + Shorewood
2021			
2024			Replace Pump 5
2026			
2030		Replace Pump 5	Replace Pump 2
2034			
2035	Replace Pump 5		
2037		Replace Pump 2	Replace Pump 4
2041			

III.A.2 Proposed Connection Point

The proposed connection point for the Village of Lemont would be at the southwest corner of Bell Road and 131st Street. Appendix 1 provides a system map showing the proposed delivery connection point. This location is approximately 1,000 feet to the east of the existing 36-inch pipeline. The predicted water pressures for projected maximum day demands are 34 pounds per square inch (psi).

III.A.3 Cost Assessment

The following section provides the anticipated costs that the Village of Lemont can expect for the ILAWC alternative. Costs will include water supply costs, capital costs for system improvements, and operation & maintenance costs.

III.A.3.a Water Supply Costs

ILAWC's water supply costs are dependent on several factors, including City of Chicago water rates, Village of Bedford Park water rates, ILAWC capital improvement costs, and ILAWC operation & maintenance costs. The current 2021 rates are provided in Table 5. As shown in the table, approximately 77% of the rate is directly dependent on Village of Bedford Park and City of Chicago water rates. ILAWC's portion of the water rate is primarily dependent on system costs and operation & maintenance expenses.

ILAWC: Current Water Supply Rates		
2021 Water Rates (\$/1000 gallons)		
City of Chicago	\$4.13	
Village of Bedford Park	\$1.66	
ILAWC	\$1.76	
Total	\$7.55	

TABLE 5: ILAWC'S CURRENT WATER SUPPLY RATES

During the City of Chicago's negotiations with the Joliet RWC, Chicago agreed to more favorable, reduced rates for the Joliet RWC. ILAWC is anticipating that similar negotiations for rate reductions can occur for Chicago's existing customers, including ILAWC. Although a formal agreement has not yet been established, ILAWC has provided potential rate reductions based on initial discussions with Bedford Park and Chicago. For this assessment, two scenarios were considered: no rate reduction vs. rate reduction. The "no rate reduction" scenario is considered the worst-case-scenario while the "rate reduction" provides the more favorable scenario if negotiations with the City of Chicago and Bedford Park are successful.

Both scenarios accounted for an annual rate increase to estimate the future rates up to the year 2050. Table 6 provides the anticipated annual rate increases. Historically, water rates for Chicago, Bedford Park, and ILAWC combined have been increasing by approximately 4.65% annually. In a scenario where water rates are not adjusted, it is assumed that the combined annual rate would continue to increase by 4.65% in the future. In Joliet RWC's preliminary discussions with Chicago, the annual rate increases were assumed to be 1.35% annually. It is assumed that ILAWC could negotiate with Chicago to have annual rate increases that match Joliet RWC annual rate increases. Therefore, the "rate reduction" scenario assumes a combined annual rate increase of 2.45%. Note that Chicago's historical annual rate increases have been higher. Additionally, Chicago annual rate increases for Joliet RWC are subject to change to account for inflation and water service costs.

Anticipated Annual Rate Increases				
Scenario	Chicago	Bedford Park	ILAWC	Combined Rate Increase
No Rate Reduction (Assume Historical Rates)	6.56%	5.48%	1.48%	4.65%
Rate Reduction (Based on Joliet Agreement)	1.35%	5.48%	1.48%	2.45%

TABLE 6: ANTICIPATED ANNUAL RATE INCREASES FOR TWO ILAWC WATER RATE SCENARIOS

Table 7 provides the projected water supply rates for both the "no rate reduction" and "rate reduction" scenarios. As seen in the table, negotiations for reduced rates with Chicago and Bedford Park could have a drastic impact on the water rates. Additionally, the future water rates will be significantly dependent on Chicago's actual annual rate increases. Since ILAWC does not yet have formal agreements with Chicago or Bedford Park on rate reductions, the rate reductions and annual rate increases are subject to change. Note that ILAWC anticipates that rate reductions from the City of Chicago would occur in 2030; for the purposes of this assessment, it is assumed that the Bedford Park rate reductions would also occur in 2030.

ILAWC: Water Supply Rate Projection			
Year No Rate Reduction Scenario (\$/1000 gallons)		Rate Reduction Scenario (\$/1000 gallons)	
2030	\$11.36	\$4.77	
2040	\$17.90	\$6.08	
2050	\$28.20	\$7.74	

TABLE 7: ILAWC'S WATER SUPPLY RATE PROJECTION

III.A.3.b Capital Cost and Debt Service

III.A.3.b.i ILAWC System Improvements

Obtaining water from ILAWC would require constructing additional infrastructure to route water into the Village's existing water distribution system. The Village of Lemont would be responsible for the upfront capital costs associated with these components. However, some of the components would be owned and maintained by ILAWC. The proposed ILAWC system improvements which will be paid for by the Village of Lemont but owned and maintained by ILAWC include:

- Approximately 1,000 feet of 24-inch transmission main along 131st Street to Lemont connection point
- Service connection and buried meter vault

III.A.3.b.ii Lemont System Improvements

The Village of Lemont would have to construct, own, and maintain the following proposed Lemont system components:

- Pump station at point of connection at Bell Road and 131st Street
- At least 3.7 million gallons of storage at Bell Road and 131st Street
- Approximately 2,000 feet of 24-inch transmission main from the pump station to Lemont's water distribution system

The storage tank sizing estimate is based on City of Chicago storage requirements, which require that customers maintain a storage size of at least two times the average daily supply. For the purposes of this study, HR Green used the projected average daily demand for the year 2030 to obtain an approximate storage size.

Additional capital improvements may be needed within the Village's existing water distribution system beyond what is identified above. Improvements may include additional watermain upgrades to effectively route water to the Village's existing water system. Further, the IEPA will require the Village to complete a corrosion control study before switching from groundwater to Lake Michigan water (see Section III.D.1 for additional information). The costs associated with the water distribution improvements and corrosion control study are not included in the capital cost estimates detailed in the next section.

III.A.3.b.iii Capital Cost Estimate

Table 8 provides the preliminary capital cost estimate (in 2021 dollars) for the construction of the infrastructure necessary for ILAWC to provide water to the Village of Lemont. The table provides both the costs for the ILAWC system improvements and the Village system improvements, both of which would be paid for by the Village. Note that the preliminary capital costs are expected to increase by 3% per year to account for inflation.

ILAWC Alternative: Capital Costs (2021 Dollars)		
Improvement	Cost	
ILAWC System Improvements		
1,000 feet of 24-inch Transmission Main [1]	\$750,000	
Service Connection & Buried Meter Vault [1]	\$350,000	
Engineering (20%)	\$220,000	
Contingency (30%)	\$230,000	
Subtotal	\$1,650,000	
Lemont System Improvements		
Two 2 MG Ground Storage Tanks [2]	\$8,205,000	
Booster Station [3]	\$1,675,000	
Transmission Main to Water Distribution System [4]	\$1,500,000	
Subtotal	\$11,380,000	
Total	\$13,030,000	
 Notes: [1] Preliminary estimate provided by ILAWC [2] Preliminary cost estimate for two ground storage tanks, electrical, instrumentation & controls, excavation, paving, watermain, engineering, and contingency. [3] Preliminary cost estimate for booster station building, pumps, SCADA, electrical, generator, engineering, and contingency. [4] Preliminary cost estimate for approximately 2,000 feet of 24" watermain, including engineering and contingency. 		

III.A.3.c Operation & Maintenance

The ILAWC's O&M maintenance costs are incorporated into the water supply cost (See Section III.A.3.a). The Village will also have to consider O&M costs for the Village-owned water distribution system, including the personnel, fleet maintenance, administration, and well maintenance costs. If the Village elects to obtain water from ILAWC, all wells would be decommissioned with the exception of Well 5 and Well 6, which will be used for emergency purposes only. The emergency wells will require some annual operation & maintenance costs to confirm that they remain reliable in case of emergencies. Table 9 provides the Village's projected O&M costs, assuming a 2% annual cost escalation (consistent with Joliet RWC's O&M cost escalation assumption). The Village's O&M costs were calculated by Village staff and were shared with HR Green.

Lake Michigan Water: Anticipated Village System Operational Costs				
	2030	2040	2050	
Well Maintenance	\$86,866	\$105,889	\$129,079	
Personnel	\$613,398	\$747,729	\$911,477	
Administrative Costs	\$213,323	\$260,039	\$316,987	
Fleet Maintenance	\$91,890	\$112,014	\$136,544	
Total	\$1,005,478	\$1,225,672	\$1,494,087	

TABLE 9: ANTICIPATED VILLAGE O&M FOR LAKE MICHIGAN WATER ALTERNATIVES

III.A.3.d Cost Summary

Table 10 provides the projected total costs for the years 2030, 2040, and 2050 in dollars per thousand gallons of water for the ILAWC alternative. The table provides the anticipated rates for two scenarios: no rate reductions vs. rate reductions. The tables include the expected cost distribution, which include Village operation costs, ILAWC water costs, and the capital with debt. As evident by the tables, the cost feasibility for ILAWC will drastically depend on whether ILAWC can secure lower rates with the City of Chicago and the Village of Bedford Park. Note that in both scenarios, the 2030 costs are expected to be higher because of the additional capital costs required to construct the infrastructure to obtain Lake Michigan water. Meanwhile, the costs for the years beyond 2030 are expected to become more heavily dependent on the ILAWC water supply costs.

ILAWC: Total Cos	ILAWC: Total Cost As Water Rate (\$/1000 gallons)					
No Rate Reduction Scenario						
	Year 2030	Year 2040	Year 2050			
Village Operation Cost	\$1.49	\$1.55	\$1.65			
ILAWC Water Costs [1]	\$11.36	\$17.90	\$28.20			
Capital with Debt [2]	\$17.17	\$4.94	\$3.55			
Total (\$/1000 gallons)	\$30.02	\$24.39	\$33.40			
Rate Reduction Scenario						
	Year 2030	Year 2040	Year 2050			
Village Operation Cost 2	\$1.49	\$1.55	\$1.65			
ILAWC Water Costs 2	\$4.77	\$6.08	\$7.74			
Capital with Debt 2	\$17.17	\$4.94	\$3.55			
Total (\$/1000 gallons)	\$23.43	\$12.57	\$12.94			

TABLE 10: ILAWC TOTAL COST AS WATER RATE FOR "NO RATE REDUCTION" AND "RATE REDUCTION" SCENARIOS

Notes:

[1] ILAWC water costs include the water supply rates from water suppliers, ILAWC O&M costs, and ILAWC general capital improvement costs.

[2] Capital with debt includes debt with issuance as well as capital CIP and equipment. Capital CIP includes the cost of ILAWC system improvements and Lemont system improvements required to obtain water from ILAWC. This includes the cost for new transmission main (both for ILAWC and Village system), new service connection, a new Village pump station, and ground storage tanks at the delivery point.

III.B. Alternative #2: Joliet Regional Water Commission

The City of Joliet has been leading efforts for planning and preliminary engineering to construct the infrastructure necessary to route Lake Michigan water from the City of Chicago to the southwest suburban region. The efforts involve developing a Regional Water Commission (RWC) to establish participating members and to support project financing. The Joliet RWC has developed numerous scenarios for the proposed water system and the final system design will depend on which communities agree to join the RWC. The Joliet RWC has asked communities wishing to join to approve the Preliminary Agreement by the end of February 2022. The Joliet RWC has indicated that the system will not be designed for excess capacity. Therefore, it is unclear whether it will be possible to join the Joliet RWC at a later time.

III.B.1 Capacity Analysis

The proposed transmission main and system capacity will be designed and constructed based on the 2050 maximum demand declared by participating member communities of the RWC. The Village of Lemont's 2050 maximum demand is projected to be approximately 4.21 MGD. The transmission main will be designed to meet future projected demands by pumping the water through the pipeline at higher velocities. The proposed pipeline material for the large transmission main will be steel or PCCP. Ductile iron pipes may be considered for smaller diameter pipes. Since the pipe components will be in new condition, they are expected to have a long service life if designed and properly installed.

III.B.2 Proposed Connection Point

The proposed connection point for the Village of Lemont would be at the southeast corner of Derby Road and 131st Street. The Joliet RWC would construct and own the transmission main up to this delivery point. Note that the exact transmission main route may change depending on which communities join the Joliet RWC. The predicted water pressures at the delivery point will be at least 25 psi, but the exact range will not be known until the Joliet RWC finalizes its design based on which members elect to participate. Appendix 2 provides a system map showing the proposed delivery connection point.

III.B.3 Cost Assessment

The following section provides the anticipated costs that the Village of Lemont can expect for the Joliet RWC alternative. Costs will include water supply costs, capital costs for system improvements, operation & maintenance costs, and commission administration costs.

III.B.3.a Water Supply Costs

Joliet RWC has negotiated reduced water supply rates with the City of Chicago through a preliminary water supply agreement. The proposed rates are provided in Table 11. Joliet RWC estimated the projected rates through 2050 assuming an annual rate increase of approximately 1.35% (provided by the City of Chicago). Note that annual rate increases are subject to change to account for inflation and/or increases in water service costs. Note that the rates in Table 11 exclude operation & maintenance costs, capital costs, and commission administration costs, which will be discussed in sections to follow.

Joliet RWC: Water Supply Rates				
Year	Water Rate (\$/1000 gallons)			
2030	\$2.74			
2040	\$3.00			
2050	\$3.29			

III.B.3.b Capital Cost and Debt Service

III.B.3.b.i Joliet RWC System Improvements

The Joliet RWC is planning to obtain water from the City of Chicago's Eugene Sawyer Water Purification Plant. This effort will involve construction of new infrastructure for both the City of Chicago and the Joliet RWC. The City of Chicago will own and construct a tunnel connection & extension, low-service pump station, and new Chicago service valve. The Joliet RWC will own and construct all infrastructure after the Chicago service valve, including the meter vault, suction well, transmission mains, pump stations, intermediate standpipe, delivery metering stations, and a commission administrative building. The capital costs for the infrastructure will be distributed among all members and will be subdivided based on each member's declared contractual maximum day demand for the year 2050.

Note that the Joliet RWC would arrange for financing for RWC members to assist with covering the capital costs associated with the Joliet RWC system improvements. The debt service would require the Village of Lemont to begin debt repayment in the year 2026 and would continue into the year 2064.

III.B.3.b.ii Lemont System Improvements

To obtain water from Joliet RWC, the Village of Lemont would have to construct, own, and maintain the following proposed Lemont system improvements:

- Pump station at point of connection at Derby Road and 131st Street
- At least 3.7 million gallons of storage at Derby Road and 131st Street

The storage tank sizing estimate is based on City of Chicago storage requirements, which require that customers maintain a storage size of at least two times the average daily supply. For the purposes of this study, HR Green used the projected average daily demand for the year 2030 to obtain an approximate storage size.

Additional capital improvements may be needed within the Village's existing water distribution system beyond what is identified above. Improvements may include watermain upgrades to effectively route water from the Joliet RWC delivery point to the Village's existing water system. Further, the IEPA will require the Village to complete a corrosion control study before switching from groundwater to Lake Michigan water (see Section III.D.1 for additional information). The costs associated with the water distribution improvements and corrosion control study are not included in the capital cost estimates detailed in the next section.

III.B.3.b.iii Capital Cost Estimate

Table 12 provides the preliminary capital cost estimate (in 2021 dollars) for the construction of the infrastructure necessary for Joliet RWC to provide water to the Village of Lemont. The table provides both the costs for the Joliet RWC system improvements and the Village system improvements, both of which would have to be paid for by the Village. Note that the preliminary capital costs are expected to increase by 3% per year to account for inflation.

TABLE 12: PRELIMINARY COST ESTIMATE FOR JOLIET RWC ALTERNATIVE

Joliet RWC Alternative: Capital Costs (2021 Dollars)					
Improvement	Cost				
Joliet RWC System Improvements					
Capital Cost [1] [2]	\$55,905,053				
Subtotal	\$55,905,053				
Lemont System Improvements					
Two 2 MG Ground Storage Tanks [3]	\$8,205,000				
Booster Station [4] \$1,675,000					
Subtotal \$9,880,000					
Total (2021 Dollars) \$65,785,053					
Notes: [1] Preliminary capital costs were estimated using the Regional Cost Calculator spreadsheet developed by Joliet's Alternative Water Source Program engineering team. The Village of Lemont's 2050 maximum day demand was adjusted based on projected future demands. [2] The Regional Cost Calculator spreadsheet provided costs in 2020 dollars. To offer a more accurate capital cost comparison, the cost was adjusted for 2021 dollars, assuming a 3% cost escalation. [3] Preliminary cost estimate for two ground storage tanks, electrical, instrumentation & controls, excavation, paving, watermain, engineering, and contingency. [4] Preliminary cost estimate for booster station building, pumps, SCADA, electrical, generator, engineering,					

III.B.3.c Operation & Maintenance

The Joliet RWC will require each participating member to begin paying operation, maintenance, and repair (OM&R) reserve costs between 2025 to 2029. The contributions to this reserve will be used for future operation of the system and future replacement projects. Table 13 provides the Village of Lemont's anticipated OM&R reserve contribution.

Joliet RWC OM&R Reserve Costs				
Year	Reserve Cost			
2025	\$162,590			
2026	\$165,841			
2027	\$169,158			
2028	\$172,541			
2029	\$175,992			

TABLE 13: JOLIET RWC OM&R RESERVE COSTS FOR YEAR 2025 TO 2029

Once the Joliet RWC water system is operational in 2030, the commission will collect annual OM&R, which will be dependent on actual water usage. This cost will include energy costs for pumping operations, in-house operations staff, as well as labor, materials & equipment for O&M. The Joliet RWC assumed a 2% cost escalation per year. Table 14 provides the Joliet RWC OM&R rates and expected annual costs.

TABLE 14. JULIET KWG UMAK KATESTUK 2030 AND DETUK	TABLE 14	4: JOLIET	RWC O	M&R	RATES	FOR	2030	AND	BEYOND
---	----------	-----------	-------	-----	-------	-----	------	-----	--------

Joliet RWC: OM&R Rates				
Year	Rate (\$/1000 gallons)	Annual Cost		
2030	\$0.39	\$262,636		
2040	\$0.44	\$346,896		
2050	\$0.53	\$478,789		

The Village will also have O&M costs for the Village-owned water distribution system, including the personnel, fleet maintenance, administration, and well maintenance costs. If the Village elects to obtain water from Joliet RWC, all wells would be decommissioned with the exception of Well 5 and Well 6, which will be used for emergency purposes only. The emergency wells will require some annual operation & maintenance costs to confirm that they remain reliable in case of emergencies. The Village's projected O&M costs will be the same as for ILAWC, provided in Table 10 of Section III.A.3.c.

III.B.3.d Commission Administration

The Joliet RWC will require each member to contribute to commission administration costs on an annual basis. This cost will support funding for the in-house Executive Director, Operations Manager, and management support. The costs will also include legal finance services, utilities, insurance, office equipment and supplies, management training/conferences, custodial services, and other administrative costs. These costs will be split evenly between all commission members. The costs will start in 2022 and will be inflated at 2% per year. Table 15 provides the Village of Lemont's anticipated commission administration contributions.

Joliet RWC: Administration Costs				
Year	Annual Administration Cost			
2022	\$114,444			
2023	\$116,733			
2024	\$119,068			
2025	\$121,449			
2026	\$123,878			
2027	\$126,355			
2028	\$128,883			
2029	\$131,460			
2030	\$195,039			
2040	\$237,752			
2050	\$289,818			

ABLE 15: JOLIE	RWC'S A	ANNUAL	ADMINISTR	ATION	COSTS
----------------	---------	--------	-----------	-------	-------

III.B.3.e Cost Summary

Table 16 provides the projected total costs for the years 2030, 2040, and 2050 in dollars per thousand gallons of water for the Joliet RWC alternative. The table includes the expected cost distribution, which includes Village operation costs, Joliet RWC water costs, and the capital with debt. Note that the 2030 cost is expected to be higher because of the additional capital costs required to construct the Village-owned pump station and ground storage tanks to obtain Lake Michigan water.

Joliet RWC: Total Cost As Water Rate (\$/1000 gallons)						
	Year 2030	Year 2040	Year 2050			
Village Operation Cost	\$1.49	\$1.55	\$1.65			
Joliet RWC Water Costs [1]	\$7.28	\$7.69	\$8.03			
Capital with Debt [2] \$13.79 \$4.77 \$3.40						
Total (\$/1000 gallons) \$22.56 \$14.01 \$13.08						
Notes:						
 Joliet RWC water costs include the water supply costs, capital costs for Joliet RWC system improvements, annual administration costs, and OM&R. 						

TABLE 16: TOTAL COST AS WATER RATE FOR JOLIET RWC ALTERNATIVE

[2] Capital with debt includes debt with issuance as well as capital CIP and equipment. Capital CIP includes the cost of Lemont system improvements required to obtain water from Joliet RWC. This includes the cost for a new Village pump station and ground storage tanks at the delivery point.

As mentioned previously, Joliet RWC would also require members to contribute to the OM&R reserve and annual administration costs between 2022 and 2029. Additionally, debt repayment for Joliet RWC's capital improvement costs would begin in the year 2026. Table 17 summaries the total anticipated costs from 2022 to 2029. The total payment to Joliet RWC before the year 2030 is expected to be approximately \$4,255,051 in 2021 dollars.

Joliet RWC: Village's Anticipated Costs before 2030 Administration OM&R Reserve Joliet RWC Debt Present Worth (2021 Year Total Cost Cost Repayment Dollars) 2022 \$114,444 \$114,444 \$111,111 \$0 \$0 2023 \$116,733 \$0 \$116,733 \$110,032 \$0 2024 \$119,068 \$0 \$0 \$119,068 \$108,964 2025 \$121,449 \$162,590 \$0 \$284,039 \$252,365 2026 \$123,878 \$165,841 \$111,046 \$400,765 \$345,704 \$1,055,862 \$884,268 2027 \$126,355 \$169,158 \$760,348 2028 \$128,883 \$172,541 \$1,110,449 \$1,147,982 \$1,411,873 2029 \$131,460 \$175,992 \$1,332,542 \$1,294,626 \$1,639,994 Total Costs Before 2030 (2021 Dollars) \$4,255,051

TABLE 17: ANTICIPATED COSTS TO JOLIET RWC BEFORE 2030

Notes:

[1] Administration costs, OM&R reserve costs, and Joliet RWC debt repayment costs were estimated using the Regional Cost Calculator spreadsheet developed by Joliet's Alternative Water Source Program engineering team.

III.C. Alternative #3: Maintain Existing Groundwater System

The final water supply alternative is to continue using the existing groundwater system as the Village's drinking water source. Appendix 3 provides the Technical Memorandum on the Hydrogeologic Evaluation prepared by LRE Water, Inc. (HR Green's hydrogeology subconsultant) on the feasibility of continuing to use the groundwater supply.

III.C.1 Capacity Analysis

III.C.1.a Well Capacity Analysis

The Village's existing wells are meeting current water demands, but as the Village's population grows through year 2060, it is expected that additional wells will be needed. Table 18 provides the existing well capacities compared to the projected 2060 average day and maximum day demands. The table shows that the projected year 2060 maximum day demand exceeds the existing well capacity in a scenario where the largest well is out of service. To meet the projected maximum day demands, the hydrogeologic evaluation recommended two additional Cambrian-Ordovician aquifer wells by 2060 with a minimum capacity of 1,000 gallons per minute (gpm) each. Since the four existing groundwater wells each have a pumping capacity above 500 gpm, it is recommended that both of the proposed wells are rated at 1,000 gpm to provide redundancy for the water supply system.

TABLE 18: FUTURE WELL CAPACITY ANALYSIS

Future Well Capacity Analysis					
	Capacity/Demand (gpm)	Capacity/Demand (MGD)			
Existing Well Capacity [1]	3,400	4.90			
Existing Well Capacity With Largest Well Out of Service [1]	2,400	3.46			
Year 2060 Average Day Demand	1,938	2.79			
Year 2060 Maximum Day Demand	3,292	4.74			
Notes:					
[1] Well capacity excluding the emergency well					

For the purposes of the cost assessment, it was assumed that one well would be installed in 2030 and one well would be installed in 2040. However, the exact well installation dates and the number of required wells will be heavily dependent on numerous factors. The following considerations may impact well installation timelines:

- Population growth may vary from what is projected.
- Water usage per person may change over time.
- Wells may degrade over time. As the existing wells age, the existing well capacities may decrease. Additionally, the static and pumping water levels may drop over time.
- Some wells may require replacement due to unpredictable circumstances, such as shifts in water quality, water quantity, or well condition.
- Constructing additional storage (i.e., a water tower) may increase system redundancy during water use peaks, which could delay the need for another well.

The Village should regularly re-evaluate its well capacities, water demands, and the above factors to better predict when a new well may be needed. The proposed year 2030 and 2040 installation dates are approximate timelines that should be re-evaluated once better data becomes available. For example, as the year 2030 approaches, the Village could re-evaluate whether a new well is needed in the year 2030 based on more up-to-date knowledge on water system conditions. Similarly, as the year 2040 approaches, the Village could re-evaluate whether a new well is needed in the year 2030 based on more up-to-date knowledge on water system conditions. Similarly, as the year 2040 approaches, the Village could re-evaluate whether a new well is needed in the year 2040 approaches.

III.C.1.b Aquifer Capacity Analysis

In 2020, the Illinois State Water Survey (ISWS) published a report to the Southwest Water Planning Group (SWPG) which indicated that the Cambrian-Ordovician aquifer is rapidly depleting at unsustainable rates within the southwest suburbs of Chicago. The Cambrian-Ordovician aquifer is a very important water supply source for many communities within Chicago's southwest suburbs, including for the Village of Lemont. The ISWS completed a study for this region, which included an update to an existing 2018 groundwater flow model. The purpose of the model was to assess the aquifer status for each community that currently uses the Cambrian-Ordovician aquifer in the study area (the Village of Lemont was included in the study area). The study assumed that the City of Joliet will cease use of the Cambrian-Ordovician aquifer in 2030 and that Oswego, Yorkville, and Montgomery will cease use of the aquifer in 2035.

The ISWS study concluded that based on current growth trends, most communities in the southwest suburbs of Chicago using the Cambrian-Ordovician aquifer will be at risk of not meeting their drinking water demands in the coming decades. The study predicted that the Village of Lemont's wells will decline in performance but it did <u>not</u> forecast that Village wells will be at risk of becoming inoperable. The risks facing the Village of Lemont and other private Cambrian-Ordovician aquifer users in the study area include the risk of dry wells, potential for wells to pump sand, increased well interference, increased well maintenance, and increased cost of pumping due to declining water levels⁴. The ISWS study concluded that the Village of Lemont's wells will be affected by regional declines in water levels. However, the study did <u>not</u> predict that the Village wells would be so severely affected that the wells would become inoperable or that the aquifer could not sufficiently meet the Village's future demands. Continued use of the aquifer may require for the pumps to be lowered, more frequent maintenance, and a greater spacing of future wells⁵.

The results of LRE Water's evaluation paint a somewhat different picture than what the ISWS study is predicting. As detailed in the Technical Memorandum, the existing groundwater wells have hydraulic conductivities that are higher than typical for a consolidated sandstone aquifer. Hydraulic conductivity is a measure of flow of water in the aquifer⁶ and higher values are better. The Technical Memorandum mentions that the typical hydraulic conductivity for a consolidated sandstone aquifer is between 0.01 to 10 gallons per day per square foot of aquifer (gpd/ft^2) while the hydraulic conductivity values for the Village's wells are between 42 and 218 gpd/ft^2. The results of LRE's hydrogeological assessment using data provided by the Village support a more optimistic projection of the viability of the Village's wells in the future.

According LRE Water's hydrogeological evaluation, the Village should be able to continue meeting its projected water demand by year 2060 as long as the Village constructs two additional deep wells. Of course, as with any modeling projections, several assumptions were made related to future growth and the continued use of the aquifer by others. If the Village's flow projection increases dramatically beyond what was assumed or if other parties outside the Village significantly expand withdrawals from the aquifer, the modeling projections may change. The pump setting for Village wells and other local private wells should be checked regularly to make sure that the equipment is adequately submerged for the projected drawdown impacts, including those predicted by the ISWS study. The Village should maintain long-term records of well static and pump levels. The Village should also maintain long-term records of specific capacity, especially prior to and after well rehabilitation projects.

III.C.2 Cost Assessment

The following section provides the anticipated costs that the Village of Lemont can expect for maintaining the existing groundwater system. Costs will include capital costs for two new wells, and Village operation & maintenance costs.

III.C.2.a Capital Cost and Debt Service

The anticipated capital costs for maintaining the existing groundwater system will include the construction of one well in 2030 and one well in 2040 to account for the Village's population growth. It is anticipated that well installation will include a new softening plant similar to the existing softening plants in the Village's current water system. Based on discussions with the Village staff, a new one million gallon (MG) water tower will also be needed by the year 2030 to meet the Village's water demands and fire flow. This water tower was not included in the ILAWC and Joliet RWC alternatives because it is expected that the required ground storage tanks at the Lake Michigan water connection points would substitute the need for a water tower. For the purposes of this cost assessment, it was assumed that the water tower would be installed in 2030. Table 19 provides the preliminary costs for two new wells and a water tower in 2021 dollars. Note that the preliminary capital costs are expected to increase by 3% per year to account for inflation.

Groundwater System Alternative: Capital Costs (2021 Dollars)				
Lemont System Improvements				
2030 Well Installation & Softening Plant [1]	\$7,665,000			
2040 Well Installation & Softening Plant [1]	\$7,665,000			
1 MG Water Tower [2]	\$7,500,000			
Total \$22,830,000				
Notes: [1] Preliminary cost for well drilling, well pump & motor, softening plant, generator, engineering & contingency. [2] Preliminary cost for water tower, including engineering & contingency. Note that costs may fluctuate as a result of market volatility in the steel industry. The proposed water tower capacity was assumed to be 1 million gallons based on discussions with the Village				

TABLE 19: PRELIMINARY COSTS FOR MAINTAINING THE GROUNDWATER SYSTEM

III.C.2.b Operation & Maintenance

The Village will have O&M costs for the Village-owned water distribution system, including the personnel, fleet maintenance, administration, and well maintenance costs. If the Village elects to remain on groundwater, all wells will remain active and two additional wells will be installed (one in 2030 and one in 2040). With more active wells in the Village's system, the well maintenance costs will be higher when compared to the Lake Michigan alternative. Table 20 provides the Village's projected O&M costs, assuming a 2% annual cost escalation (consistent with Joliet RWC's O&M cost escalation assumption). The Village's O&M costs were calculated by Village staff and were shared with HR Green.

TABLE 20: ANTICIPATED VILLAGE O&M COSTS FOR MAINTAINING THE GROUNDWATER SYSTEM

Existing Groundwater System: Anticipated Village Annual Operational Costs			
	2030	2040	2050
Well Maintenance	\$417,401	\$508,809	\$620,236
Personnel	\$613,398	\$747,729	\$911,477
Administrative Costs	\$213,323	\$260,039	\$316,987
Fleet Maintenance	\$91,890	\$112,014	\$136,544
Total	\$1,336,012	\$1,628,592	\$1,985,244

III.C.3.c Cost Summary

Table 21 provides the projected total costs for the years 2030, 2040, and 2050 in dollars per thousand gallons of water for maintaining the existing groundwater system. The table includes the expected cost distribution, which includes Village operation costs and the capital with debt. This alternative does not include water costs since the Village would be the water supplier. Note that the 2030 and 2040 costs are expected to be higher because of the additional capital costs required to construct two new wells.

Groundwater System: Total Cost As Water Rate (\$/1000 gallons)				
	Year 2030	Year 2040	Year 2050	
Village Operation Cost	\$1.98	\$2.07	\$2.20	
Water Costs	\$0.00	\$0.00	\$0.00	
Capital with Debt [1]	\$25.57	\$11.10	\$5.34	
Total (\$/1000 gallons)	\$27.55	\$13.17	\$7.54	
Notes: [1] Capital with debt includes debt with issuance as well as capital CIP and equipment. Capital CIP includes the cost of one new well in 2030, one new water tower in 2030, and one new well in 2040.				

TABLE 21: TOTAL COST AS WATER RATE FOR THE GROUNDWATER SYSTEM ALTERNATIVE

III.D. Lake Michigan Source Water Considerations

There are several considerations when switching to Lake Michigan source water that would apply for both ILAWC and Joliet RWC. This includes the need for a corrosion control study, meeting IDNR Lake Michigan Allocation requirements, and a switch in the water quality.

III.D.1 Corrosion Control Study

Obtaining water from ILAWC or Joliet RWC would mean that the Village's source water would change from groundwater to surface water. The IEPA requires that public water systems complete a corrosion control study whenever they propose to change their water source. Changes in source water can have significant impacts on water quality, can impact the effectiveness of corrosion control treatment, and can increase lead and copper release into drinking water⁷. The IEPA's corrosion control study requirements have become more stringent in recent years due to recent water quality issues experienced in various communities, including University Park, Illinois. A thorough corrosion control study is necessary to confirm that water pipe corrosion will not occur after the water source switch. If the Village decides to switch its water source to Lake Michigan water, a corrosion control study will need to be accounted for in the budget and schedule.

III.D.2 IDNR Lake Michigan Allocation Requirements

To obtain Lake Michigan water, the Village will have to obtain a Lake Michigan water allocation permit from the Illinois Department of Natural Resources (IDNR) and will have to meet IDNR requirements. The IDNR requires that communities seeking to obtain and maintain water allocation must have less than 10% of losses from non-revenue water. If losses are above 10%, the community must establish a plan to reduce losses. The plan could include efforts such as water conservation within the community or establishing a water distribution system capital improvement program to reduce water losses. The Village is currently in the process of applying for a Lake Michigan Allocation through the IDNR.

III.D.3 Water Quality Comparison

Both ILAWC and Joliet RWC will provide water to the Village of Lemont from the City of Chicago's Sawyer Water Purification Plant. Therefore, both Lake Michigan alternatives are expected to have similar water quality. Table 22 provides a summary comparing the City of Chicago and Village of Lemont water quality from the 2020 CCR. As shown in the table, the City of Chicago's water source contaminant levels are below the maximum contaminant levels required by the USEPA. Note that unlike Lemont's current water source, Lake Michigan water has disinfection by-products, including TTHMs and HAA5. Disinfection by-products are formed when naturally occurring organic materials in water react with the chlorine used to kill waterborne bacteria and viruses¹⁰. Disinfection by-products are common in water supplies with surface water sources because there are higher levels of organic materials in surface water¹⁰.

The City of Chicago's water source has significantly less sodium and sulfate, which are both contaminants that are currently unregulated by state and federal regulations⁵. High sodium levels can occur as a result of the water softening process. Higher sulfate levels are also more common in groundwater due to contact with soil and rock containing sulfate minerals¹¹.

TABLE 22: WATER QUALITY COMPARISON FOR CITY OF CHICAGO AND VILLAGE OF LEMONT

Water Quality Comparison					
	City of Chicago (2020 CCR) ⁸ Village of Lemont (2020 CCR) ⁹ USEPA Drinking Water Regu			gulations	
Contaminant	Highest Level Detected	Highest Level Detected	Primary Maximum Contaminant Level Goal (MCLG)	Primary Maximum Contaminant Level (MCL)	Secondary Maximum Contaminant Level
Total Coliform Bacteria (% positive/month)	0.2%	0%	0	5%	N/A
Fecal Coliform and E. Coli (# positive/month)	0	0	0	0	N/A
Chlorine (mg/L)	1	0.7	4	4	N/A
Arsenic (ug/L)	Below detectable levels	1.9	0	10	N/A
Barium (mg/L)	0.0201	0.0015	2	2	N/A
Copper (mg/L)	0.091 (90th percentile)	0.16 (90th percentile)	1.3	Action Level = 1.3	1
Lead (mg/L)	9.1 (90th percentile)	4.4 (90th percentile)	0	Action Level = 15	N/A
Fluoride (mg/L)	0.75	1.26	4	4	2
Iron (mg/L)	Below detectable levels	0.026	N/A	1	0.3
Sodium (mg/L)	9.55	210	N/A	N/A	N/A
Sulfate (mg/L)	27.8	130	N/A	N/A	250
Zinc (mg/L)	Below detectable levels	0.017	5	5	5
Combined Radium 226/228 (pCi/L)	0.95	1	0	5	N/A
Gross alpha excluding radon and uranium (pCi/L)	3.1	5	0	15	N/A
Total Nitrate & Nitrite [as nitrogen] (mg/L)	0.42	Below detectable levels	10	10	N/A
TTHMs [Total Trihalomethanes] (ug/L)	28.6	Below detectable levels	N/A	80	N/A
HAA5 [Haloacetic Acids] (ug/L)	12	Below detectable levels	N/A	60	N/A
Notes:					
mg/L	milligrams per liter				
ug/L	micrograms per liter				
pCI/L	picocuries per liter (a measure of radioactivity)				
Level Goal	I he level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.				
Maximum Contaminant	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration.				

IV. Financial Summary

Table 23 provides a summary of the approximate costs in dollars per thousand gallons for the three water supply alternatives: ILAWC, Joliet RWC, and maintaining the existing groundwater system. The anticipated expenses including capital costs, O&M, water supply costs, debt & issuance, and administration costs, as applicable to the given alternative. The ILAWC alternative has two scenarios to account for the possibility of the City of Chicago and Village of Bedford Park potentially reducing their rates in the future.

Alternative Comparison: Tota	al Cost as Water Ra	ate (\$/1000 gallor	is)
Alternative/Scenario	Year 2030	Year 2040	Year 2050
ILAWC - No Rate Reduction	\$30.02	\$24.39	\$33.40
ILAWC- Rate Reduction	\$23.43	\$12.57	\$12.94
Joliet RWC	\$22.56	\$14.01	\$13.08
Maintain Groundwater System	\$27.55	\$13.17	\$7.54

TARIE 23.	τοται	COSTS A	S WATER	RATES AI	TERNATIVE	& SCENARIO	COMPARISION
TADLL ZJ.	IVIAL	CO313 A	JWAILIN	INAILS. AI		X JULINAILIU	CONFAILOUN

Figure 3 provides the 2030 water costs for all the alternatives and scenarios, including the expected Village operation costs, water costs, and capital with debt. As shown in the figure, the capital expenses for maintaining the groundwater system are expected to be higher in the year 2030 because the cost includes the installation of a new well and a new water tower. However, the capital costs for the groundwater option will reduce significantly after 2030 once the well and water tower are installed. Figure 4 provides a comparison of the anticipated costs as a water rate from 2030 through 2050 for all alternatives and scenarios.

Figure 5 provides the total present value (2021 dollars) of the expected water costs through 2050 for each alternative and scenario. The figure shows that maintaining the existing groundwater system is currently the least costly option. When comparing the two Lake Michigan alternatives, the more cost effective solution will be heavily dependent on if the ILAWC will be able to secure lower water rates from the City of Chicago and Village of Bedford Park.

V. Water Alternative Comparison

In addition to financial considerations, there are numerous qualitative considerations that should be considered before selecting the water supply alternative that works best for the Village. Table 24 provides a water alternative comparison matrix which lists other considerations for the three alternatives.

Water Alternative Comparison Matrix					
Category	ILAWC	Joliet RWC	Groundwater System		
Water Security	Lake Michigan water is considered a reliable, long-term source water option.		Currently, the predicted groundwater depletion is not expected to be severe enough to prevent the Village from meeting future demands. However, according to the ISWS, the aquifer's withdrawal rate is currently unsustainable and there is some future uncertainty with the water source.		
Existing System Infrastructure	ILAWC's infrastructure is well established.	Joliet RWC infrastructure has not yet been constructed. Construction costs, project schedule, and system parameters are subject to change.	The Village's groundwater infrastructure, including wells and softening plants, are well established.		
System Condition	ILAWC has indicated that system components are in good condition at this time. The 36- inch PCCP transmission main's remaining service life is approximately 29 years. Some pumps at the Grant Road Booster Station may need to be replaced in the future.	The system will be new and is expected to have a long service life.	The existing groundwater system is currently in fair condition and regularly maintained by the Village water staff.		
System Capacity	Currently the system has sufficient capacity to handle the Village's demands. However, the addition of new ILAWC customers in the future may reduce the available capacity.	The system would be designed to handle the Village's projected future capacity.	The system will have sufficient capacity once two new wells are built to account for future growth (one well in 2030 and one well in 2040).		
Customers and Cost Distribution	Existing customers are well established. The anticipated cost distribution among existing customers for O&M costs and capital costs are predictable.	O&M costs & capital costs are in preliminary stages. Cost distribution among members may change depending on the finalized construction costs and the actual number of members who join the Joliet RWC.	Not applicable - Existing groundwater system capital and O&M costs are paid for by the Village of Lemont.		
Governance	The Village would be an ILAWC customer rather than an equal partner.	The Village would be an equal partner of the Joliet regional water commission.	Not applicable		

TABLE 24 CONTINUED: WATER ALTERNATIVE COMPARISON

Water Alternative Comparison Matrix				
Category	ILAWC	Joliet RWC	Groundwater System	
	City of Chicago and Village of Bedford Park water rates may	Joliet RWC has established	The Village is the water supplier	
Supplier Water Rates	reduce in the future, but no formal agreements have been made yet. The future annual cost	Chicago with favorable water rates. The agreement also has a cap on the annual cost	establishing future water rates. The established rates would primarily depend on the Village's	
	escalation is not yet known.	escalation.	water expenses.	
Water Quality	Lake Michigan water has a higher level of organic materials, meaning that disinfection by-products are more common. The Lake Michigan water source has significantly less sodium and sulfate.		Groundwater sources have fewer organic materials, making disinfection by-products less common. The water has higher sodium and sulfate levels.	
Corrosion Control Study	Switching water sources will require a corrosion control study.		No corrosion control study is anticipated.	
Village O&M	Since a majority of the wells will be decommissioned once on Lake Michigan water, the Village's O&M costs are expected to decrease.		Village O&M costs will be higher than the Lake Michigan option to account for well maintenance.	
Overall Costs	Total water costs will be higher due rates, O&M, commission cap	e to water supplier costs (water bital improvements, etc.).	Maintaining the existing groundwater system is expected to have the lowest total water costs.	

VI. Conclusion

This report evaluated the feasibility and costs associated with the three water supply alternatives: 1) Illinois American Water Company System, 2) Joliet RWC, and 3) maintaining the existing groundwater system. The purpose of this report was to provide guidance to help the Village make an informed decision to meet current and future water needs.

All three alternatives will have some level of uncertainty. The financial analysis shows that maintaining the existing groundwater system will be the most cost effective option. Currently, the predicted groundwater depletion is not expected to be severe enough to prevent the Village from meeting future demands. However, according to the ISWS, the aquifer's withdrawal rate is currently unsustainable and there is some future uncertainty with the water source. The primary uncertainty with ILAWC is related to the water rates; the cost feasibility will be heavily dependent on whether ILAWC can secure a formal agreement with the City of Chicago for reduced water rates and a cap on the annual cost escalation to match Joliet RWC's agreement. Lastly, the primary uncertainty with the Joliet RWC is that the infrastructure is not yet constructed, so the exact costs and timeline of the system are subject to change. The Village's ultimate decision should consider both the financial and qualitative aspects of each water supply alternative.

VII. References

- 1. https://www.epa.gov/sdwa/drinking-water-regulations-and-contaminants
- 2. https://www.oswegoil.org/home/showpublisheddocument/4629/637786283522100000
- 3. https://nrc-publications.canada.ca/eng/view/accepted/?id=293fca34-70f8-4633-8c01-d37ea768abd5
- 4. https://www.rethinkwaterjoliet.org/videogallery?pgid=kq2orz86-d51175cc-dac8-4fd6-ae88-ec786cc6de3b
- Illinois State Water Survey (ISWS), 9/07/2020 (Abrams, Daniel B. and Cecilia Cullen, M.S.,) Groundwater Science Section. University of Illinois at Urbana-Champaign, Champaign, IL. "Lemont, IL: Sandstone Water Supply Study", 4 pages
- https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydraulicconductivity#:~:text=15.4.&text=Aquifer%20hydraulic%20conductivity%20(A)%20is,et%20al.%2C%20200 5).
- 7. https://www.epa.gov/sites/default/files/2019-07/documents/occtmarch2016updated.pdf
- 8. https://www.chicago.gov/content/dam/city/depts/water/ConsumerConfidenceReports/2020_WaterQuality Report.pdf
- 9. https://www.lemont.il.us/home/showpublisheddocument/4118/637582391393730000
- 10. https://www.health.state.mn.us/communities/environment/water/factsheet/ddbp.html
- 11. https://www.health.state.mn.us/communities/environment/water/wells/waterquality/sulfate.html

Appendix 1

Appendix 2

Appendix 3

Technical Memorandum

То:	Ravi Jayaraman, HR Green
From:	Martha Silks, LRE Water
Reviewed by:	Mike Plante, PG, GISP and Dave Hume, LRE Water
Date:	December 2, 2021 (Revised 02/16/2022)
Project:	LRE No. 5018HRG18
Subject:	Hydrogeologic Evaluation on the Feasibility of a Groundwater Supply Option for Expanding Raw Water Supply, Village of Lemont, Illinois

1.0 INTRODUCTION AND PROJECT OBJECTIVE

The Village of Lemont (Village) is currently using groundwater wells for its water supply. The Village was interested in evaluating whether they should stay on groundwater wells or move to alternate water supply sources – specifically Lake Michigan water from Illinois American Water Company (ILAWC) or from proposed Joliet Regional Water Commission. LRE Water (LRE) was retained by HR Green as its hydrogeological subconsultant to assist with the evaluation of groundwater wells at water supply source. In addition to that effort, LRE was tasked with completing a hydrogeologic evaluation (Evaluation) to estimate the feasibility of developing additional public water supply (PWS) wells completed in the deep Cambrian-Ordovician aquifer (C-OA) for the Village of Lemont, Illinois (Village).

The Village is in Cook County, approximately equal distance between the cities of Joliet and Naperville, and the Village of Summit, Illinois. It is the Village's desire to locate new wells within the Village boundaries (Study Area). One new proposed well is planned to be located on property owned by the Village near the intersection of Derby Road and Archer Avenue. Possible locations for a proposed second well were evaluated as part of this Evaluation. It is intended that each new well will be designed for a 1,000 gallon per minute (gpm) capacity. Figure 1 presents the Study Area and the existing Village water system map. Figure 2 presents historical and/or existing deep wells (> 1,000 feet total depth) located within the Study Area. An inventory of these wells is included as Attachment A.

Illinois Environmental Protection Agency (IEPA) recommends that the Village's average day demand be able to be supplied by the Village's firm water supply capacity. Firm water supply capacity is defined as the capacity of the system with the largest well out of service. The Village has projected a population of 31,000 by Year 2060. The projected Village

Ravi Jayaraman, HR Green December 2, 2021 (Revised 02/16/2022) Page 2 of 10

average day and maximum day demand by year 2060 is 2.79 MGD (1,938 gpm) and 4.74 MGD (3,292 gpm).

2.0 REGIONAL HYDROGEOLOGY AND USAGE

LRE reviewed available geologic and hydrogeologic reports, and other available pertinent data from municipal and private well records within the Study Area. Deep groundwater resources in the region are developed mainly from two aquifer systems 1) shallow dolomite formations (Silurian aquifer), and 2) deep sandstone and dolomite formations of the C-OA (HR Green, 2016). All of the high-capacity wells within the Study Area are open to the C-OA. The formations open to C-OA wells include limestone, shale, and sandstone. The combined thickness of the sandstone units ranges from 235 to 300 feet thick within the Study Area and are considered the most productive.

Cambrian-Ordovician aged formations, including those that comprise the C-OA, occur at or near the land surface or directly below glacial deposits in parts of north-central and northwestern Illinois (and into southern Wisconsin). Recharge to the C-OA is predominately from precipitation and surface water infiltration and to a lesser extent from leakage of other geologic units that are hydraulically connected (K-Plus, 2014). A more detailed literature review of the C-OA was conducted by HR Green in 2015 and their technical memorandum (Attachment B) covers the hydrostratigraphy of the C-OA in detail. Future well sites were recommended to be to the east-northeast of the Village to move pumping centers farther away from the intensely stressed area near Joliet and into areas with greater available drawdown (HR Green, 2015).

In 1864, when the first known well was drilled into the C-OA in Chicago, the well flowed with sufficient pressure to produce an 80-foot column of water. By the mid-1900's, withdrawals from the C-OA had exceeded the annual naturally occurring recharge rate (K-Plus, 2014). By 1979 there was a pronounced water level depression centered on the Chicago metropolitan area with as much as 850 feet of decline in Chicago and other major pumping centers. The extent of the water level decline extended throughout northeastern Illinois and into parts of southern Wisconsin (K-Plus, 2014). After 1979, due to many concerns related to the declining piezometric surface, other sources of water supply were developed. These conversions to alternate sources reduced withdrawals from the C-OA and, for a time, reversed the drawdown trend (K-Plus, 2014). The C-OA remains the most used groundwater source in the region.

3.0 STATE REQUIREMENTS REGARDING LOCATION OF PWS WELLS

The State Administration Code (Title 77, Section 920.50) states that a minimum lateral distance is 200 feet between a new well's location from a potential contamination source (PCS) that exist on or adjacent to the location of the well. The State may allow a variance to the minimum separation distances if the PCS and well have the same owner. In such a situation the State will require assurances the well is constructed with applicable and sufficient protective measures to minimize the potential for contamination of the well. Table 1 provides the United States Environmental Protection Agency (USEPA) listed activity types and sources they consider a PCS. It is important to note that these are examples of what is considered a PCS and not a complete list.

Activity Type	EPA List of Potential Contaminant Sources
Agriculture	Fertilizer storage and use, animal feedlots, animal waste disposal systems, animal burial, manure stockpiles (e.g., pits and lagoons), manure spreading, general waste disposal wells, pesticide storage and use (e.g., spread by airplane), field irrigation
	Airports, boatyards, railroad track and yards, junkyards, recycling and waste
Commercial	shops, gas stations, construction sites, golf courses, floor drains and waste disposal wells, research laboratories and medical institutions, funeral homes and cemeteries
Industry	Oil and gas production and storage, pipelines, petroleum refineries, chemical manufacture and storage, mining, electroplating facilities, foundries, metal fabrication facilities, machine shops, waste disposal wells, paper mills, textile mills
Residential	Fuel oil storage tanks, household chemical storage and use, swimming pool chemical storage, septic tanks and leach fields, sewer lines, floor drains, lawn fertilizer storage and use
Other	Road de-icing, landfills, sewer lines, storm water pipes and drains, abandoned production and disposal wells, nearby active disposal wells, illegal dumping

Table 1 - USEPA List of Potential Contaminant Sources

Source: www.epa.gov/privatewells/potential-well-water-contaminants-and-their-impacts

4.0 EXISTING AND PROJECTED FUTURE VILLAGE GROUNDWATER USE

Table 2 presents completion and usage information of active Village wells. Four of the five active Village wells are completed in the C-OA. Well 2 is completed in the Silurian Aquifer and is used for emergency backup. Projected Village average day and maximum day demand by year 2060 is 3.94 MGD (2,736 gpm) and 6.7 MGD (4,653 gpm) (HR Green Correspondence 11/8/2021). To meet this projected demand, with the largest well out of service, two additional 1,000 gpm C-OA wells are required.

Well ID	Date Completed	Casing Diameter (in)	Casing Depth (ft bgs)	Open Hole Interval (ft bgs)	Pump Setting Depth (ft bgs)	Capacity (gpm)
Well #2	Backup	Well for Em	ergency Use, SI	nallow Aquifer TD	241 ft	350
Well #3	10/01/1963	12	1,152	1,152 – 1,723	931	705
Well #4 ⁽¹⁾	9/01/1978	16	1,150	1,150 – 1,658	935	712.5
Well #5	4/24/1996	18	1,175	1,175 – 1,675	948	970
Well #6	10/18/2004	18	1,186	1,186 - 1,665	1,089	970

Table 2 - Village Well Completion and Usage Information

Notes: Completion information are from Well Records Provided by Layne Christensen.

Pumping capacities are from HR Green, 2016. TD = Total Depth

(1) Record notes the well alignment is off at 650 ft bgs.

5.0 HYDROGEOLOGICAL ASSESSMENT OF EXISTING GROUNDWATER WELLS

The Village obtained historical completion and testing information from Layne Christensen on the Village's C-OA wells and this data is provided in Attachment C and summarized in Table 3. The summary below includes static water levels, test pumping rates, and specific capacities for each test and rate step. Specific capacity (Q/s) is the pumping rate divided by the resulting water level drawdown and is presented as gallons per minute per foot of drawdown (gpm/ft).

Well ID and Ground Elevation	Date of Pumping Test	Test/Step Rate	Test/Step Duration (min)	SWL (ft bmp)	PWL (ft bmp)	Specific Capacity (gpm/ft)
Lievation		822	60		815	20.6
Wall #3	3/24/2009	852	60	775	821	18.5
736 ft msl	0/24/2000	881	60	110	824	18.0
70011110		613	30		796	10.0
		856	240	-	790	17.1
	10/2/1978	1032 ⁽¹⁾	780	740	804	16.1
		841 ⁽²⁾	390	1	794	15.6
Well #4	8/24/1989	890	NR	795	827	27.8
731 ft msl	8/19/1991	700	NR	831	855	29.2
	0, 10, 1001	723	30		802	12.7
	6/19/2007	781	30	745	804	13.2
		856	30	-	810	13.2
		902	30		824	25.8
		982	30		830	24.0
	7/1/1997	1020	30	789	834	22.7
		1096	30		841	21.1
Well #5		852	30		828	21.8
740 ft msl		867	30		835	18.8
	2/20/2006	909	30	789	842	17.2
		1007	NR		842	19.0
		950	30		817	8.6
	6/15/2006	963	45	707	820	8.5
		982	45		829	8.0
		815	30		786	10.1
	4/29/2009	860	25	705	797	9.3
		916	30		806	9.1
Well #6		584	30		801	5.8
718 ft msl	1/18/2012	641	30	701	811	5.8
		676	30		821	5.6
		976	5		848	7.1
		1001	10		853	7.0
	8/18/2021	1050	5	711	863	6.9
		1044	10		868	6.6

Table 3 - Summary of Well Test Data of Village C-OA Wells

Notes:

(1) Pumping rate varied from 1,000 to 1073 gpm during step, average rate was 1,032 gpm.

(2) Pumping rate varied from 810 to 876 gpm during step, average rate was 841 gpm.

Ground elevations were estimated from GoogleEarth[™].

NR: not recorded, ft bmp: feet below measuring point

The data presented in Table 3 do not show a significant change in static water levels from 1978 to 2021 in the Village wells.

Ravi Jayaraman, HR Green December 2, 2021 (Revised 02/16/2022) Page 6 of 10

The specific capacity can be used to estimate aquifer transmissivity (T), in a confined aquifer, using the empirical equation: Q/s = T/2000 (Driscoll, 1986). The estimated C-OA T values obtained from the variable rate tests of the Village wells (Table 3) ranged from 11,200 to 58,400 gallons per day per foot of drawdown (gpd/ft) or 1,497 to 7,807 square feet per day (ft²/day). Dividing by an aquifer thickness of 267.5 feet (average thickness value) results in hydraulic conductivity values between 42 and 218 gallons per day per square foot of aquifer (gpd/ft²) or 5.6 to 29 feet per day (ft/day). These are high values for a consolidated sandstone aquifer indicating the C-OA has higher than typical hydraulic properties. Typically, the hydraulic conductivity of a consolidated friable sandstone aquifer is between 0.01 to 10 gpd/ft² (Driscoll, 1986, p. 75).

Specific capacities, obtained from data on the well registration forms of other private wells within the Study Area, ranged from 3.36 to 15.92 gpm/ft. (Attachment A). The estimated T values obtained from this data ranged from 6,700 to 31,840 gpd/ft or 898 to 4,257 ft²/day. Dividing by an aquifer thickness of 267.5 feet results in hydraulic conductivity values between 25 and 119 gpd/ft² or 3.35 to 15.9 ft/day

We would have preferred a greater number of well test results to include in the analysis. The pump setting of Village and local private wells should be regularly checked to make sure there is adequate equipment submergence for the projected drawdown impacts. The Village should maintain long-term records of well static and pumping levels. Also maintain long-term records of specific capacity particularly prior to and after well rehabilitation projects.

Software produced by HydroSOLVE, Inc. (AQTESOLV ver. 3.01) was used to generate a plot of time-recovery data from the October 2, 1978 test in Well #4 and estimate T of the C-OA near the Village (Attachment C). This analysis resulted in a T for the C-OA to be 19,420 gpd/ft or 2,596 ft²/day. Dividing the T by an aquifer thickness of 267.5 feet results in a hydraulic conductivity value of approximately 73 gpd/ft² or 10 ft/day Again, this is a high value for a consolidated friable sandstone aquifer (Driscoll, 1986, p. 75).

6.0 ISWS REPORT TO SOUTHWEST WATER PLANNING GROUP

In 2020, the Illinois State Water Survey (ISWS) published a report to the Southwest Water Planning Group (SWPG) on the status of the C-OA within the southwest suburbs of Chicago. The Village was included in the ISWS study area. An important source of water supply to many communities within the ISWS study area is the C-OA. The report cites

Ravi Jayaraman, HR Green December 2, 2021 (Revised 02/16/2022) Page 7 of 10

that withdrawals from the C-OA have been unsustainable for nearly a century and, as a result, water levels have declined.

In 2018, the City of Joliet (Joliet) assessed its long-term water supply and determined that the C-OA could not meet their needs as early as 2030. With Joliet planning to cease use of the C-OA, communities in Kendall County have also considered converting their water supply to another source.

The ISWS study included the update of an existing 2018 groundwater flow model to assist SWPG in making a community-by-community assessment for existing C-OA users. In the model scenarios and study conclusions, it was assumed that Joliet ceases use of the C-OA in 2030, and the cities of Oswego, Yorkville, and Montgomery cease use of the C-OA in 2035. The ISWS study concluded that most C-OA wells in the SWPG region are at risk of not meeting supply in the future and, as water levels continue to decline, they will become increasingly vulnerable to new demands in the region. Their predictions were, that by 2030, the Village wells would be at risk of declining well performance but did not forecast Village wells would be at risk of no longer operating. The risk factors facing the Village and private C-OA users in the Study Area include risk of dry wells, potential for wells to pump sand, increased well interference, increased well maintenance, and the increased cost of pumping due to declining water levels (ISWS, 2018).

The ISWS study concluded that the Village wells would be affected by the regional C-OA water level decline. The ISWS study did not predict that the Village wells would be so severely affected that they would be inoperable or the C-OA could not sufficiently meet Village's future demand. Continued use may require the pumps be lowered, more frequent maintenance, and greater spacing of future wells (ISWS, 9/07/2020).

A meeting was held between HR Green Project Engineer (Ravi Jayaraman, PE), LRE Hydrogeologist (Martha Silks), and the ISWS modelers (Daniel B. Abrams and Cecilia Cullen, M.S) on 11/30/21. From the discussion the following clarifications and modifications were offered:

- 1. The risk areas in the ISWS model results (shown in orange in both the ISWS model report and the summary reports: ISWS, 9/07/2020) are assumed to be 600 feet above the top of the Ironton-Galesville formations of the C-OA. Historically when water levels (static and pumping) fall to this level, wells are at risk of declining production.
- 2. In the ISWS prepared summary for the Village of Lemont (ISWS, 9/07/2020) where a drawdown of 200 feet was used for a Well #3 hydrograph. This drawdown was assumed because ISWS did not have an actual drawdown for the

well. The actual water level drawdown observed in Well #3 is much less (Table 3). ISWS agreed to revise the hydrograph based on actual data. ISWS clarified that the change in drawdown trend of the hydrographs around 1980 was a result of a number of groundwater users switching from C-OA to a shallow aquifer or surface water source. ISWS ran their model with the revised drawdown data for Well #3 and mentioned that there was no substantial change to the initial recommendations.

- 3. HR Green and LRE Water asked if the groundwater model could be re-run to account for the Village of Romeoville, Illinois recent decision to switch from their use of the C-OA to Lake Michigan as their water supply source. ISWS responded that they could not do this additional modeling but that the water level recovery expected from the reduction in Romeoville's withdrawal from the C-OA would not be significant.
- 4. ISWS clarified that the 2050 and 2070 peak demand conditions simulated in the groundwater model were the results of annual time steps with the addition of 14 days of peak demand pumping for both 2050 and 2070. The groundwater model simulations with the additional C-OA withdrawal of 1.5 and 3.0 MGD were hypothesized as a new data center or if a large industry should switch from a surface water to a C-OA water supply source.

The results of hydrogeological assessment completed by LRE paint a somewhat different picture than what ISWS modeling study is predicting. As detailed above in Section 5 of this Memorandum, the estimated aquifer transmissivity (T) values obtained from the variable rate tests of the Village wells ranged from 11,200 to 58,400 gallons per day per foot of drawdown (gpd/ft) or 1,497 to 7,807 square feet per day (ft2/day). Dividing by the aquifer thickness of 267.5 feet (average thickness value) results in hydraulic conductivity values between 42 and 218 gallons per day per square foot of aquifer (gpd/ft2) or 5.6 to 29 feet per day (ft/day). These are high values for a consolidated sandstone aquifer indicating the existing groundwater wells have higher than typical hydraulic properties. Also as mentioned in the Section, the typical hydraulic conductivity of a consolidated friable sandstone aquifer is between 0.01 to 10 gpd/ft2. The results of the hydrogeological assessment completed by LRE with the data provided by the Village support a more optimist projection of the viability of the Village's wells in the future.

Ravi Jayaraman, HR Green December 2, 2021 (Revised 02/16/2022) Page 9 of 10

7.0 CONCLUSIONS AND RECOMMENDATIONS

Calculations of drawdown impact on Village wells with the addition of two C-OA wells indicate that the Village should be able to meet future projected demand by year 2060. Of course, as with any modeling projection there are assumptions related to growth and likely continued use of the aquifer by others. Should the Village's flow projection increase dramatically beyond those assumed or should other parties outside the Village access or significantly expand withdrawals from the C-OA the modeling projections could be impacted. The pump setting of Village and local private wells should be checked to make sure there is adequate equipment submergence for the projected drawdown impacts, including those predicted by the ISWS study. The Village should maintain long-term records of well static and pumping levels. Also maintain long-term records of specific capacity particularly prior to and after well rehabilitation projects. Table 4 presents predictions of drawdown impact in each of the identified C-OA wells within the Study Area, with both proposed wells (Well #7 and Well #8) pumping 1,000 gpm for 90 days. These predictions of drawdown impact do not include drawdown in the well or cumulative impact from private C-OA wells. Information on private well usage, static water levels, and pumping water levels would be required to include these impacts.

Should the Village decide to continue use of the C-OA aquifer two well sites are proposed to meet future Village demand. The proposed well sites for Well #7 and Well #8 are shown on Figures 2 and 3. It is recommended that both wells are completed in the C-OA with well depths of approximately 1,665 feet bgs, similar to Wells #5 and #6.

Ravi Jayaraman, HR Green December 2, 2021 (Revised 02/16/2022) Page 10 of 10

LIST OF FIGURES

Figure 1	Village Water System and Study Area
Figure 2	Registered Wells within Study Area that Exceed 1,000 Foot Depth
Figure 3	Proposed Village Well #7 and Well #8 Locations

LIST OF ATTACHMENTS

Attachment AInventory of Registered Wells Within Study AreaAttachment BHR Green 2015 Technical MemorandumAttachment CAQTESOLV Time-Drawdown Plot of Village Well #4 Pumping Test
Data and Well Information Provided by Layne Christensen.

REFERENCES AND BIBLIOGRAPHY

Illinois State Water Survey (ISWS), 2018 (Abrams, Daniel B.), On-Line Video: <u>https://www.rethinkwaterjoliet.org/videogallery?pgid=kq2orz86-d51175cc-dac8-4fd6-ae88-ec786cc6de3b</u>

Illinois State Water Survey (ISWS), 2020 (Abrams, Daniel B. and Cecilia Cullen, M.S.,) Groundwater Science Section. University of Illinois at Urbana-Champaign, Champaign, IL. "Analysis of Risk to Sandstone Supply in the Southwest Suburbs, A Report to the Southwest Water Planning Group (SWPG)", September 2020. 59 pages <u>https://db3eaa5b-627b-4351-a0d6-a59bfce6a4d6.filesusr.com/ugd/3961f7_3efe99005b4240ef9a6d3a00373ec687.pdf</u>

Illinois State Water Survey (ISWS), 9/07/2020 (Abrams, Daniel B. and Cecilia Cullen, M.S.,) Groundwater Science Section. University of Illinois at Urbana-Champaign, Champaign, IL. "Lemont, IL: Sandstone Water Supply Study", 4 pages

Driscoll, F.G., 1986. Groundwater and Wells, Second Edition, 1,089 pages

HR Green, 2015 (Brennan, P.HG., PG.,), "Literature Review Cambrian-Ordovician Aquifer for Village of Lemont, Illinois". HR Green Project No. 86150006

HR Green, December 2016, "Water System Needs Analysis, Village of Lemont, Illinois

Illinois Environmental Protection Agency (IEPA), 2011. Source Water Assessment Program Factsheets, Community of Lemont, Illinois

Illinois State Geological Survey (ISGS), On-Line Well Registrations: <u>https://prairie-research.maps.arcgis.com/apps/webappviewer/index.html?id=e06b64ae0c814ef3a4e43a19</u> <u>1cb57f87</u>

K-Plus Engineering, LLC. (Loring, James L. P.G. and Daniel Caplice), 2014, "Community Supply Well Review, Village of Glenwood", K-Plus Project No. 24042

Attachment A

Inventory of C-OA Wells in Study Area

							Inner			Pumping	Pumping	Calculated	Estimated
						Well	Casing	SWL on	PWLon	Rate on	Duration	Specific	Aguifer
				Completion		Depth (ft	Depth (ft	Record (ft	Record	Record	on Record	Capacity	Transmissivity
Well ID		Latitude	Longitude	Date	Well Status	bgs)	bgs)	TOC)	(FT TOC)	(gpm)	(hrs)	(gpm/ft)	(gpd/ft)
Well 2	Village of Lemont	41.658015	-87.999293	NR	Backup	241	NR	NR	NR	NR	NR	-	-
Well 3	Village of Lemont	41.657803	-87.999509	10/1/1963	Active	1723	1152	NR	NR	NR	NR	-	-
Well 4	Village of Lemont	41.668103	-87.990797	8/1/1978	Active	1658	1150	NR	NR	NR	NR	-	-
Well 5	Village of Lemont	41.650128	-88.013471	4/24/1996	Active	1675	1175	NR	NR	NR	NR	-	-
Well 6	Village of Lemont	41.665082	-87.953783	10/18/2004	Active	1665	1186	NR	NR	NR	NR	-	-
Old Well 2	Village of Lemont	41.676326	-87.998929	1892	Plugged	2284	NR	NR	NR	NR	NR	-	-
	Poor Clare Monastery	41.666414	-87.916823	4/12/2002	Unknown	1600	1400	NR	NR	NR	NR	-	-
	North American Car Co.	41.691618	-87.949755	9/1/1960	Unknown	1601	392	415	475	955	24	15.92	31,833
	St. Vincent DePaul Seminary	41.680058	-87.966114	NR	Unknown	1685	NR	NR	NR	NR	NR	-	-
	Public Service (NRG Will Co.												
	Power Generating Station)	41.634751	-88.062200	1952	Unknown	1536	320	NR	NR	NR	NR	-	-
	Commonwealth Edison Co.	41.631601	-88.057979	4/15/1974	Unknown	1503	852	NR	NR	NR	NR	-	-
	Prairie State Paper Mills	41.516835	-88.054041	pre 3/14/1964	Unknown	1635	NR	NR	NR	NR	NR	-	
	Prairie State Paper Mills	41.516835	-88.054041	10/1/1963	Unknown	1639	1169	457	680	750	18	3.36	6,726
	Our Lady of Victory	41.676036	-87.976495	3/20/1969	Unknown	1633	1074	616	744	1000	24	7.81	15,625
	Union Oil Company	41.645971	-88.055146	8/1/1968	Unknown	1460	810	509	543	302	6	8.88	17,765
	Union Oil Company	41.645991	-88.054227	6/29/1968	Unknown	1460	320	520	552	289	6	9.03	18,063
	Union Oil Company	41.656194	-88.042919	6/1/1969	Unknown	1501	340	480	588	510	NR	-	-
	Thiopene Products Co.	41.659429	-88.045122	12/1/1930	Unknown	1456	827	209	247	275		7.24	14,474
	Lemont Manufacturing Co.	41.662009	-88.039310	5/1/1959	Unknown	1498	400	NR	NR	NR	NR	-	-
	Argonne National Lab	41.715666	-87.971917	1/1/1950	Unknown	1595	NR	NR	NR	NR	NR	-	-
	Proposed Well #7	41.661816	-87.965000										
	Proposed Well #8	41.650126	-87.970071										

(1) NA = Not Applicable: Well #2 is completed in the shallower Silurian Aquifer that is not hydraulically connected.

(2) Well Drawdown assumes only 10% well loss (80% well efficiency) and does not include drawdown imapct from other wells.

Attachment B

HRG 2015 Technical Memorandum – Literature Review Cambrian-Ordovician Aquifer

Technical Memorandum

LITERATURE REVIEW CAMBRIAN-ORDOVICIAN AQUIFER

April 28, 2015

Prepared For:

Village of Lemont 418 Main Street Lemont, IL 60439

Prepared By:

Literature Review Cambrian-Ordovician Aquifer

For

Village of Lemont, Illinois

Prepared By:

Name:	Greg Brennan, P.HG., P.G.
	Professional Geologist
	Certified Professional Hydrogeologist

Signature: 6 Kag Dremm

Date: <u>4/28/2015</u>

HR Green, Inc. 8710 Earhart Lane SW Cedar Rapids, IA 52404 Phone: (319) 841-4000 Fax: (319) 841-4012

HR Green was contracted to perform a literature review of existing hydrogeologic studies to identify viable areas for current and future wells. The following is a summary of findings, which focus on the deep groundwater resources of the region.

Geology and Hydrogeology

Deep groundwater resources in the region are developed mainly from two aquifer systems, including: 1) shallow dolomite formations known as the Silurian aquifer; and 2) deep sandstone and dolomite formations known as the Cambrian-Ordovician aquifer. The Village of Lemont Well #4 driller's log is shown below; the Well #5 log is not available. Table 1 shows the generalized stratigraphic units encountered and their corresponding hydrologic function. The Cambrian-Ordovician aquifer, which extends to a depth of about 1,640 to 1,700 feet beneath Lemont, is discussed herein.

Well #4, 1978. Total depth is 1,658 feet.

Formation	Top Depth
Silurian	116 Feet
Maquoketa	258
Galena	488
St Peter	833
Ironton	1,453
Eau Claire	1,638

The Cambrian-Ordovician aquifer (aka, "deep sandstone aquifers") is comprised of two major sandstone aquifers including the shallower St. Peter and the deeper Ironton-Galesville. These major sandstone aquifers are separated by a low permeability interval of dolomite and shale (the Prairie du Chien, Eminence-Potosi, and Franconia Formations) which forms a confining layer between them. The Ironton-Galesville sandstone is the more productive of the two sandstone aquifers, but supplemental yields are often obtained St. Peter sandstone. The Cambrian-Ordovician aquifer is bounded above and below by regional confining units – above by the Ordovician age Galena-Platteville dolomite and Maquoketa shale and below by the Cambrian age Eau Claire formation which is dominantly shale (Burch, 2008).

- The St. Peter sandstone is part of the Ancell Group (composed of the Glenwood Formation and St. Peter sandstone) which often exceeds 200 feet in thickness. The St. Peter sandstone consists of fine-grained well-sorted quartz sandstone. The majority of municipal and industrial wells finished in the St. Peter sandstone produce less than 200 gallons per minute (gpm), (Burch, 2008).
- The Ironton-Galesville sandstone is generally 175 to 200 feet thick (Suter et al., 1959). Most high-capacity, deep municipal and industrial wells in the region obtain a major part of their yields from this aquifer (Burch, 2008).

The hydrologic properties of an aquifer describe how the aquifer responds to pumping, which in turn determines the pumping rates and spacing of production wells. Testing in the region indicates the Cambrian-Ordovician aquifer exhibits confined aquifer behavior with the following average hydraulic properties: Transmissivity of 17,000 gallons per day/foot (gpd/ft) and Storage Coefficient of 0.0003 (Prickett & Lonnquist, 1971).

Table 1: Generalized Stratigraphy and Hydrologic Function (From: USGS, Scientific Investigations Report 2005-5122)

SYSTEM	GROUP	Formation	REGIONAL AQUIFER OR CONFINING UNIT		LOCAL HYDROGEOLOGIC DESIGNATION	THICKNESS (feet)	DESCRIPTION
		Cahokia					Alluvial silt, sand, gravel
ary		Equality	Sand and				Lacustrine silt, clay, sand
Juaterna	Mason	Peoria and Roxanna Silt	and till, silt, and clay confining	Gla	cial drift aquifers and confining units	0-400	Eolian silt
		Henry	units				Glacial alluvial silt, sand, gravel
	Wedron	Lemont					Glacial till
iai.		Kankakee					
Silur		Edgewood	Silurian aquifer		Units of Maquoketa Group less than 160 feet below bedrock surface part	0-100	Dolomite
		Neda	-		of shallow bedrock aquiter. Units more than about 160 feet below		
	Maquoketa	Brainard	-	er	bedrock surface part of upper	0-150	Shale, locally argillaceous dolomite
		Fort Atkinson	Upper	aquif	part of shallow bedrock aquifer		or limestone
		Scales	confining unit	rock	where unit is at bedrock surface,		
	Galena			v bed	overlain by Maquoketa Group.	0-350	Dolomite and
_	Platteville			allow			Imestone
loviciar		Glenwood		S	Ancell aquifer. Part of shallow		Sandstone, shale at top.
Orc	Ancell	St. Peter			Ordovician aquifer system where overlain by Galena-Platteville unit	200-300	Sandstone. Basal shale (Kress Member)
		Shakopee	l g			0-200	Dolomite
	lu Chiel	New Richmond	er syste			0-65	Sandstone
	airie	Oneota	aquif	unit	Upper part of Prairie du Chien part of shallow bedrock aquifer where at	0-250	Dolomite
	Pro	Gunter	cian	ning	bedrock surface. Parts of Prairie	0-15	Sandstone
		Eminence	-Ordovi	le confi	du Chien Group and sandstones are aquifers locally where not at bodrock surface	100	Dolomite and sandstone
		Potosi	Ibrian	Midd	beulock surface.	100-150	Dolomite
		Franconia	Cam			100	Dolomite, sandstone, and shale
		ronton					Sandstone, fine-to-
Cambrian		Galesville			Ironton-Galesville aquifer	175-200	medium grained, well sorted, upper part dolomitic
		Fau Claira	Lower confining unit		Lower confining unit	300-400	Shale, siltstone, dolomite
			Mt, Simon		Mt. Simon aquifer	300-400	Sandstone (Elmhurst Member)
		Mt. Simon	aquitor			2500-2800	Sandstone

Deep Aquifer Pumpage and Groundwater Levels

Decades of groundwater pumping have led to significant groundwater level decline in the metroarea. Figure 1 shows Simulated Groundwater Withdrawal versus Time; By Aquifer Group and Scenario. In this figure the low water withdrawal scenario is called the Less Resource Intensive scenario (LRI), and the high withdrawal scenario is called the More Resource Intensive (MRI) scenario. Between these is the Baseline (BL) scenario. Dziegielewski and Chowdhury (2008) developed these three different scenarios of future water withdrawals that assume 1971-2000 average climate condition. Note that under any scenario pumping from the deep Cambrian-Ordovician represents the greatest use of groundwater resources. The rapid decrease in groundwater pumpage from the deep bedrock aquifers during the 1980s and 1990s initially resulted in a rapid recovery of regional groundwater levels. However, the rate of water-level change flattened and the aquifer water levels have resumed a slow decline since 2000 corresponding to increasing groundwater withdrawals, which is a trend that is anticipated to continue.

Figure 1: Simulated Groundwater Withdrawal versus Time; By Aquifer Group and Scenario.

Figure 2 shows the water level condition of the Cambrian-Ordovician aquifer. The major feature of the 2007 potentiometric surface map is the pumping cone around Joliet, which is only about 10 miles from Lemont. Joliet continues to be the largest public water supply using the deep sandstone aquifers, where the water level elevation of about -200 feet represents an approximate 900 foot decline from pre-development (year 1865) conditions. The potentiometric surface represents the water level elevation in wells that penetrate the deep aquifer.

Figure 2: Potentiometric surface of the deep sandstones in northeastern Illinois, fall 2007 (From: Burch, 2008)

To assess the aquifer's recent water level trend Figure 3 illustrates a comparison between the observed groundwater levels in 2000 and in 2007. Groundwater levels in a large portion of the Chicago region have declined from 0 to 50 feet. The area around Joliet remains similar to 2000 as indicated by the zero change contour though new pumping wells west of Joliet expanded the cone of pumping significantly westward during that 7 year period. In area of Lemont the aquifer's water level did not decline indicating less development stress.

Figure 3: Changes in groundwater levels in deep sandstone wells between 2000 and 2007 (From: Burch, 2008)

The current and future aquifer conditions are described as follows by Meyer, et. al., 2012:

"Computer simulation of plausible scenarios of future pumping suggests that significant additional drawdown,...and changes in the quality of groundwater withdrawn from deep wells are all possible...before 2050. Regional model simulations suggest heads will continue to recover to a limited degree in eastern parts of northeastern Illinois, where many water systems abandoned deep wells in the 1980s and 1990s. The combination of continued head declines in the Joliet - Aurora area and continued head recovery in Cook and DuPage Counties shifts the deepest parts of the Chicago area cone of depression west-southwest to the Joliet-Aurora area. Modeling suggests limited areas of partial to complete desaturation (draining of pore spaces) of the Ancell Unit by 2050. Deep wells in the areas where the Ancell Unit head is near to the top of the Ancell, and where the Ancell Unit is partially desaturated, may be vulnerable to increases in arsenic, barium, and radium concentrations...Partial desaturation of the Ancell Unit will also lead to decline in well yield and increasing pumping expenses. Modeling also suggests desaturation of portions of the Ironton-Galesville may occur before 2050, which would contribute to further declines in well yields and increases in pumping costs."

Figure 4 depicts two maps (year 2005 and projected year 2050) which project that most of the future Cambrian-Ordovician aquifer development will be west-southwest of Lemont. Such a geographic focus means the greatest drawdown stress on the aquifer will be west-southwest of Lemont. Figure 4 also anticipates additional development in or near Lemont.

Figure 5 depicts mapping of observed available deep composite head above the top of the Cambrian-Ordovician aquifer (i.e., the Ancell Unit), based on 2007 potentiometric surface mapping by Burch (2008). (A map of available observed deep composite head above the top of the Ironton-Galesville was not included in the Meyer report because nowhere in northeastern Illinois was the 2007 available observed deep composite head above the top of the Ironton-Galesville less than 200 feet.) The area of Lemont appears to have greater than 100 feet of available head (i.e., available drawdown) with the value increasing toward the east-northeast.

Conclusions and Recommendations

For Lemont, it appears the siting of an additional high-capacity Cambrian-Ordovician well(s) is feasible. Site selection should focus on areas as far east-northeast as possible from existing wells. This would extend source development farther away from the intensely stressed area near Joliet and into areas with greater available drawdown.

Greater available drawdown has two major benefits. First, in a confined aquifer such as this, it corresponds in direct relationship to increased well capacity. Second, production can be more easily managed to maintain a target maximum drawdown level, such that the overlying confining unit (i.e., the Galena-Platteville dolomite and Maquoketa shale) and upper portion of the Cambrian-Ordovician aquifer (i.e., the Ancell Group) are not dewatered. When such dewatering occurs vertical drainage of water filtered through the overlying "dirty" shale confining unit enters the aquifer thereby imparting poor quality characteristics such as increased metals and radium.

If desired HR Green can evaluate well construction and operations records (i.e., pumping rates, static and pumping levels, quality) to assess the efficiency of existing well field management and expansion scenarios such as capacity, drawdown management, and well spacing criteria.

Figure 4: Recent and Projected Groundwater Withdrawal – Cambrian-Ordovician Aquifer.

Figure 5: Available observed composite deep well head in 2007 based on mapping by Burch (2008). Available head is not shaded where greater than 200 feet.

References

- Burch, Stephen, 2008. A Comparison of Potentiometric Surfaces for the Cambrian-Ordovician Aquifers of Northeastern Illinois, 2000 and 2007. Center for Groundwater Science, Illinois State Water Survey, Institute of Natural Resource Sustainability, University of Illinois.
- Dziegielewski and Chowdhury, 2008. *Regional Water Demand Scenarios for Northeastern Illinois: 2005-2050.* Report prepared for the Chicago Metropolitan Agency for planning. Department of Geography and Environmental Resources, Southern Illinois University.
- USGS, 2005. Surface-Water and Ground-Water Resources of Kendall County, Illinois, Scientific Investigations Report 2005-5122.
- Meyer, Scott, et. al, 2012. Northeastern Illinois Water Supply Planning Investigations: Opportunities and Challenges of Meeting Water Demand in Northeastern Illinois Opportunities and Challenges of Meeting Water Demand in Northeastern Illinois. Contract Report 2012-03. Illinois State Water Survey, Prairie Research Institute, Champaign, Illinois.
- Prickett, T.A. and C.G. Lonnquist. 1971. Selected Digital Computer Techniques for Groundwater Resource Evaluation. Illinois State Water Survey Bulletin 55, Champaign, Illinois.

Attachment C

Aqtesolv Plot of Time-Recovery Data of Well #4 1978 Pumping Test Data

Layne Christensen File Information on Village Wells

Jason Gray 721 W. Illinois Avenue Aurora, IL 60506 630.897.6941 graniteconstruction.com

October 27, 2021

Mr. Jerry Turrise Village of Lemont

RE: Well Logs and Well Test Data Sheets

Jerry:

Attached please find your requested information for available well logs, drill records, and pumping records accessible to Layne for Wells 3, 4, 5 and 6.

Best regards,

Jason Gray Project Manager I Layne, a Granite Company

WATER RESOURCES

, . 		LOCATION Nº 37N11E-29.46 OWNER'S Nº X3 WELL NO. 3
	CityLemont	_CountyCookY4-
2	Section 29 Twp. No.	<u>37N Range 11E +++++</u>
1	Location (in feet from section corner) $\frac{450}{850^{\circ}N}$.	2525 2275 W. SE corner Carrection per RTS 7/77 ++++++
	Owner_Village of Lemont_#	_Authority
a	Contractor Wehling Well Works	Address Beecher 87654321
	Date drilledOct1963	Elev. above sea level top of well742
	Depth 1723	· · · · · · · · · · · · · · · · · · ·
	Logsee test report	
	Were drill cuttings saved yes	Where filedSGS
	Size hole 20" 0-118.5' If reduced, where and	how much 19 1/4" 118.5-519', 15 1/4" 519-1152
	Casing record 20" 0-118 1/2', 16" 0-52	0' (cemented), 12" 1086 1/2-1152'
	Distance to water when not pumping 605	Distance to water is 714
	feet after pumping at 1020	G. P. M. for23hours.
.)	Reference point for above measurements top	of casing, 3' above LSD
	Type of pump <u>test</u> turbine	
	Length of cylinder	Length of suction pipe below cylinder
	Length stroke	Speed
	Hours used per day	Type of power
	Rating of motor	Rating of pump in G. P. M
<u>K</u>	Can following be measured: (1) Static water	level
	(2) Pumping level	(3) Discharge
	(4) Influence on other wells	
	Temperature of water	Was water sample collectedyes
	Date	Effect of water on meters, hot water
	coils, etc.	
	Date of Analysis	Analysis No. 161698
		RecorderWehling Well Works RTS
	2807-22617 12	DateNov. 14, 1963
Ϋ́.		

*

2/4

November 27, 1963

KELL PRODUCTION TEST VILLAGE OF LEMONT, WELL NO. 3 COOK COUNTY by

Wehling Well Works

Owner: Location:

Date Completed: Date of Test: Length of Test: Aquifer: Village of Lemont Section 29.4b, T. 37N., R. 11E. October 1963 October 17-18, 1963 23 hours Cambrian-Ordovician

WELL DATA

PUMPED WELL

Well No: Driller: Drill Cuttings: Depth: Holo Record:	3 Wehling Well Works State Geological Survey - Naperville 1723' 20" 0-118 1/2'; 19 1/4" 118 1/2-519'; 15 1/4" 519-1152'; 12" 1152-1723'
Casing Record:	20" 0-118 1/2'; 16" 0-520' (cemented); 12" 1086 1/2-1152'
Pump and Power:	Johnston Turbine 14" bowls set at /30", 350 np electric motor
Ground Elevation at Well: Measuring Point: Measuring Equipment: Static Level:	742' Top of casing, 3' above LSD 730' air line 605'

Remarks: Shot with 420 qts solidified nitroglycerine in 8 shots. Shots at 1646', 1642', 1625', 1608', 1600', 1580', 1560', 1540' VILLAGE OF LEMONT

-2-

WELL NO. 3

3/4

MEASUREMENTS

PUMPED WELL

Date		Time	Alt.	Depth to water	Draw- down	Piez. tub e	Pump.	
1963	Hour	(min)	(ft)	<u>(ft)</u>	(ft)	<u>(in.)</u>	(gpm)	Remarks
10-17	5:50P			605				Nonpumping level
	5:50	0	125			35	830	Pump on
	6:00	10	60	670		36	830	2 C
	6:15	25	32	698		36	830	Cloudy
	6:30	40	40	690	85	36	830	Cloudy
	6:45	55	45	685	SO	36	830	Cloudy
	7:00	≊ 70	45	685	80	36	830	Cloudy
	7:00	~70	16			54	1030	Started pumping 1030 gpm
	7: 20	90	30	∛00	95	54	1030	Cloudy
	7:30	100	27	703	98	54	1030	Cloudy
	7:45	115	24	706	101	54	1039	Cloudy
	8:00	130	25	706	101	54	1030	Clearing
	8:30	160	25	706	101	54	1030	
	9:00	190	25	706	101	54	1030	Started pumping 1090 gpm
	9;15	205	21	709	104	60	1090	Clearing
	9:30	220	21	709	104	60	1090	Started pumping 1100 gpm
	10:00	250	20	710	10 5	61	1100	Clearing S
	10:30	280	20	710	105	61	1100	
	11:00	310	20	710	105	61	1100	
	11:30	340	20	710	105	61	1100	
	12:00	370	19	711	105	61	1100	
10-18	12:30A	400	17	713	108	61	1100	
	1:00	430	15	715	110	61	1100	
	1:30	460	15	715	110	61	1100	
	2:00	490	14	716	111	61	1100	
	2:30	520	12	718	113	61	1100	
	3:00	550	12	718	113	61	1100	
	3:30	580	12	718	113	61	1100	
	4:00	610	11	719	114	61	1100	
	4:30	640	11	719	114	61	1100	4
	5:00	670	11	719	114	61	1100	Water
	5:30	700	11	719	114	61	1100	Clearing
	6:00	730	11	715	114	60	1090	Seal brake aroun
								cil tube, leak
			• -				1000	about 100 gpm
	6:30	760	15	715	110	53	1020	Clearing
	/:00	790	15	715	110	53	1020	Clearing
	/130	820	10	714	103	55	1020	Clearing
	5100	850	10	714	103	22	1020	Clearing
	8130	880	10	/14-	103	33	1020	Clearing
	2100	AI 0	10	/14	103	23	1020	cicaring

ò

VILLAGE OF LEMONT

November 27, 1963

Date 1963	Hour	Time (min)	Alt. gage (ft)	Depth to water (ft)	Draw- down (ft)	Piez. tube (in.)	Pump. rate (gpm)	4/4- <u>Remarks</u>
10-18	9:30A	940	16	714	109	53	1020	
	10:00	970	16	714	109	53	1020	
	11:00	1030	16	714	109	53	1020	
	12:00	1090	16	714	109	53	1020	
	1:00	1150	16	714	109	53	1020	Clear
	2:00	1210	16	714	109	53	1020	
	3:00	1270	16	714	109	53	1020	
	4:00	1330	16	714	109	53	1020	
	5:00	1390	16	714	109	53	1020	Start to pump 1100 gpm
	5:15	1405	6	724	119	61	1100	
	5:30	1420	6	724	119	61	1100	
	5:45	1435	6	724	119	61	1100	Pump off

DRILLER'S LOG

VILLAGE OF LEMONT, WELL NO. 3

Formation	From	To
Clay	× 0	20'
Clay, gravel, mud	20	94
Broken lime	94	123
Ling	128	268
Lime and shale	268	273
Shale	273	397
Line	397	414
Shale	414	498
Line	498	846
Sand	846	1093
Shale and line	1093	1464
Sandy lime	1464	1504
Sand.	1504	1571
Line	1571	1576
Sand	1576	1648
Shale and lime	1643	1723

WELL TEST DATA SHEET

Layne Christensen Company

PROFESSIONAL SERVICES FOR WATER SYSTEMS

721 West Illinois Avenue, Aurora, Illinois 60506-2892 Telephone 630/897-6941 229 West Indiana Avenue, Beecher, Illinois 60401 Telephone 708/946-2244

Job	Lemont, IL	Well No.	3	
Location	State Street			2
Dia. of Well	16" x 12"			
Depth of Well	1,640 ft.			
Length of Airline	927 ft.			
Static Level	767 ft.			
Orifice Size	8" x 6"			

Date Tested8/9/2017Tested ByMorganegg-Fecht-RumpleDriver300HP BJ, 460V, 14"HColumn & Shaft8" T&CBowls16 Stage - 12 2CKH BronzeManufacturerByron JacksonSerial No.00-RN-1284

	1		Air Gauge	Pumping	1 2	Dis. F	Press.	Total		
Time	Piez. (in)	G.P.M.	(ft)	Level	Drawdown	Lbs.	Ft.	Head	AMPS	Remarks
		0	160	767	0	0				£
8:20	27.0	822	125	802	35	55			305/298/306	Black
8:25	26.5	815	125	802	35	55				Rusty - little scale
8:35	26.5	815	125	802	35	55				Clearing/cloudy
8:45	26.5	815	125	802	35	55			300/296/293	
8:50	26.5	815	122	805	38	45			299/296/293	Trace of silt
00	26.5	815	120	807	40	45				
9:10	26.5	815	119	808	41	45			299/293/296	Clear
9:20	26.5	815	119	808	41	45				
9:30	30.0	867	112	815	48	35			305/300/303	
9:45	30.0	867	112	815	48	35				Clear
10:00	30.0	867	112	815	48	35				
10:10	30.0	867	112	815	48	35			300/305/303	
									FLA = 367	
								FINA	L SPECIFIC	CAPACITY = 18.1 GPM/FT.
1										
1.00										

WELL TEST DATA SHEET

Layne-Western

a division of Layne Christensen Company

PROFESSIONAL SERVICES FOR WATER SYSTEMS

721 West Illinois Avenue, Aurora, Illinois 60506-2892 Telephone 630/897-6941 229 West Indiana Avenue, Beecher, Illinois 60401 Telephone 708/946-2244

Imme Piez (m) G.P.M. Air Gauge Pumping (ft) Disadown Lbs. Piezs. Initial (th) AMPS Remarks Imme 0 156 775 0 0 1	JobVillage of LemontLocationState St. ?Dia. of Well16" x 12" x 10"Depth of Well1640 ft.Length of Airline931 ft.Non-Pump Level775 ft.Orifice Size8 x 6			_Well No. <u>3</u>			Date Tested Tested By Driver Column & Shaft Bowls Manufacturer Serial No.		3/24/2009 Poppen 300HP BJ Type H, 460V 8" T&C 15 stage - 12" 2CKH all bronze Byron Jackson 00-RN-1284		
0 156 775 0 <td>Time</td> <td>Piez. (in)</td> <td>G.P.M.</td> <td>Air Gauge (ft)</td> <td>Pumping Level</td> <td>Drawdown</td> <td>Dis. H Lbs.</td> <td>Press.</td> <td>Total Head</td> <td>AMPS</td> <td>Remarks</td>	Time	Piez. (in)	G.P.M.	Air Gauge (ft)	Pumping Level	Drawdown	Dis. H Lbs.	Press.	Total Head	AMPS	Remarks
v v			0	156	775	0	0				
9 20 27.0 822 127 804 29 55 294-303-299 Ditty 9 25 27.0 822 122 809 34 55 290-299-294 Clearing 9 40 27.0 822 121 810 35 55 Clearing 9 40 27.0 822 117 814 39 55 Clearing 9 50 27.0 822* 117 814 39 55 287-297-291 Trace of sand 0 27.0 822 117 814 39 45 290-297-291 Trace of sand 10 10 29.0 852 111 820 45 290-297-299 10 30 29.0 852 111 820 45 Clear 10 40 29.0 852 111 820 45 Clear 10 40 29.0 852 111 820 45 45 <											
9 25 27.0 822 122 809 34 55 290-299-294 Clearing 9 40 27.0 822 121 810 35 55 Clearing 9 40 27.0 822 118 813 38 55 Clearing 9 50 27.0 822 117 814 39 55 Clearing 9 50 27.0 822* 116 815 40 55 287-297-291 Trace of sand 0 10 29.0 852 117 814 39 45 290-297-299 10 30 29.0 852 111 820 45 45 10 40 29.0 852 111 820 45 45 Clear 10 40 29.0 852 110 821 46 45 Clear 11 40 31.0 881 108 823 48 35 <td>9 20</td> <td>27.0</td> <td>822</td> <td>127</td> <td>804</td> <td>29</td> <td>55</td> <td></td> <td></td> <td>294-303-299</td> <td>Dirty</td>	9 20	27.0	822	127	804	29	55			294-303-299	Dirty
9 30 27.0 822 121 810 35 55 Image: constraint of the state of t	9 25	27.0	822	122	809	34	.55			290-299-294	Clearing
940 27.0 822 118 813 38 55 Image: constraint of the state of th	9 30	27.0	822	121	810	35	55				Clear
950 27.0 822 117 814 39 55 Image: Married Marr	9 40	27.0	822	118	813	38	55				
0 27.0 822* 116 815 40 55 287-297-291 Trace of sand 10 10 29.0 852 117 814 39 45	9 50	27.0	822	117	814	39	55				Clear
Mark	20	27.0	822*	116	815	40	55			287-297-291	Trace of sand
10 10 29.0 852 117 814 39 45 Image: constraint of the state of t						Ittes					
10 20 29.0 852 113 818 43 45 290-297-299 10 30 29.0 852 111 820 45 45 10 40 29.0 852 111 820 45 45 Clear 10 50 29.0 852 110 821 46 45 Trace of sand 11 00 31.5 888 109 822 47 35	10 10	29.0	852	117	814	39	45				Clear
10 30 29.0 852 111 820 45 45 Clear 10 40 29.0 852 111 820 45 45 Clear 10 50 29.0 852 110 821 46 45 Trace of sand 10 0 31.5 888 109 822 47 35 Clear 11 00 31.0 881 108 823 48 35 Clear 11 20 31.0 881 108 823 48 35 293-303-297 <	10 20	29.0	852	113	818	43	45			290-297-299	
10 40 29.0 852 111 820 45 45 45 46 45 45 46 46 45 46 45 46 45 45 45 46 46 46 46 46 45	10 30	29.0	852	111	820	45	45				
10 50 29.0 852 110 821 46 45 Image: Margin and Marg	10 40	29.0	852	111	820	45	45				Clear
Image: Marking	10 50	29.0	852	110	821	46	45				Trace of sand
11 00 31.5 888 109 822 47 35 Image: constraint of the straint of						lition					
11 10 31.0 881 108 823 48 35 293-303-297 11 20 31.0 881 107 824 49 35 293-303-297 11 30 31.0 881 107 824 49 35 293-303-297 11 45 31.0 881 107 824 49 35 20 203-303-297 11 45 31.0 881 107 824 49 35 20 203-303-297 11 45 31.0 881 107 824 49 35 20 203-303-297 11 45 31.0 881 107 824 49 35 20 203-303-297 11 45 31.0 881 107 824 49 35 20 20 200-20 11 45 31.0 881 107 824 49 35 20 20 200-20 12 10 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <td< td=""><td>11 00</td><td>31.5</td><td>888</td><td>109</td><td>822</td><td>47</td><td>35</td><td></td><td></td><td></td><td>Clear</td></td<>	11 00	31.5	888	109	822	47	35				Clear
11 20 31.0 881 108 823 48 35 293-303-297 11 30 31.0 881 107 824 49 35 11 45 31.0 881 107 824 49 35 11 45 31.0 881 107 824 49 35 11 45 31.0 881 107 824 49 35 11 45 31.0 881 107 824 49 35 11 45 31.0 881 107 824 49 35	11 10	31.0	881	108	823	48	35				
11 30 31.0 881 107 824 49 35 Image: state st	11 20	31.0	881	108	823	48	35			293-303-297	7
11 45 31.0 881 107 824 49 35 Image: Constraint of the co	11 30	31.0	881	107	824	49	35				
Sp. Q = 18.0 Image: Constraint of the	11 45	31.0	881	107	824	49	35				
Sp. Q = 18.0 Image: Control of the second											
*FLOWMETER READS: 830GPM Image: Constraint of the second seco	Sp. Q =	18.0									
*FLOWMETER READS: 830GPM				<u> </u>							
	*FLOW	METER	READS: 8	330GPM							
						+					
	1 1										

æ

8			1		-		-	
Lą	yne	la	yne-U	leste	ern Com	pan	y,Inc.	
x		Subject _	VILLAGE	OF L	EMONT	NELL	THE Dat	te <u>7746 19,199</u> 1
	WELL		16" DIA (WEL	X I L MIS	660' DEEP ALIGNMEN	GAL	ESVILLE 650')	SANDSTONE
	Pump	<i>.</i>	BYRON 11 MQH	d A 1 - 16	CKSON STAGE, CLE	250 H 3F, BOU	P, 14, H,	460 V NOTOR. GPM @ 927'TDH)
	ab i ne Lizentines		865'-	8 935 p	TRAIGHT TH	+READ	PIPE, E	DO MCM CABLE
5708	DATE	SWL	CAPACITY	PWL	DISCH. PRESS	TDH	ANPS	REMARKS
27.8	8-24-84	795'	890 GPN	827'	60psi(138,6')	966'	342, 345, 345	NEW PUMP
29.1	?! 8-19-91	831'	700 G.PM	855	68psi (157')	1012'	340	PUMP CHECK
15.2	10-2-78 (TEAT AMP)	740'	8536 m	796				
				j., .	n salar ing			
10 I I I I		1.424 - X -						ednes for de triff
	900							
	$\widehat{\mathbf{t}}$		865' 1	PUMP	SETTING		19 1991	ولايتين و را اين اين اين. اي ويكسك اير ور <u>ا و اين</u>
1 .	850				;	х <u>Аи</u> д.		
	EVE	28	31'SWL	- sei Ta tak		Aug	.24, 1984	
	- B00							
211	TER	<u>_ 7</u>	<u>195'SWL</u>	5. 2		ब्द्रस्य । सन्द्रस्य । सन्द्र स्व	- os se interna Algogo konst Sekson	i i filo
	3 750					2 24 5 2 ¹⁰		
	4	ng dan Solom Talah		11 × 1141	en - "- concep h- all korrenta			
	oL			1			2 200 /000	
	0	100	200 300	400	500 600 1	00 80	900 1000	िन्दु में अस्तर्थना हुन मन्त्र जनवना के सार्वक्रमण्ड स
				WEL	L CAPAC	LITY	(GPM)	
-								R. J.F. 8-19-91
2								2201 102 -

	JRVEYS WELL RECORD Sprad No. 2/ mat well No. 2/ to II License No. JD2-223 Date June 19, 1978 13. County Caak Sec. 29, 1 Twp. 778 Twp. 778 BoveElev boveElev From (FL) To (FL) LOCATION IN	+1 116. 1985 7104 24 26 4 116 1150 1150 1150 1150 1150 1150 1150		ECESSARY)
245 (O. FRATZES) A REARESTER ALLER AL CALEMAL TO STAT CONSUMER REALTAL FROTOCITION, SUS MES 32761, DG HOT DETACH GEOLOGICAL WATE 1106 PROPER WEEL LOCATION.	GEOLOGICAL AND WATER SI GEOLOGICAL AND WATER SI 10. Property owner <u>Village of Lem</u> Address <u>Huston Rd. Lemon</u> 11. Permit No. <u>75752</u> 12. Water from <u>Formetten</u> at depth to <u>1658</u> ft. 14. Screen: Diam. in. Length: ft. Slot 11.70'S & 120' W of NE of a 15. Casing and Liner Pipe Diam. (n) <u>Kind and Weich</u>	20 Black steel 16 Black steel 16 Black steel 16 Black steel 16 cemented in 16. Size Hole below casing: 17. Static level ft. below casing 17. Static level ft. below casing 17. Static level hours. 17. Static level hours. 18. Fokuartions PasseD THROUGH 18. Fokuartions PasseD THROUGH	CONTINUE ON SUPARATE SHEFT IF N	(CONTINUE ON SEPARATE SHEET IF N Vahitne Wait ne Walt Marks
FILL IN ALL PERTINENT INFORMACLY DEPARTMENT OF FUBLIC ALATIL, O JEFFERSON, SPRINGFIELD, ALLINGD, SURVEYS SECTION. BE SURE TO PROV	ENT OF PUBLIC HEAL TH TRUCTION REPORT 20" 116 19 1034 Buried Slab: Yes No wel Packed II. In Rock X.	Approved by the E.P.A. I. Seepage Tile Field 75 Sewer (non Cast iron) 75 Sewer (cast iron) 75 Barnyard Manure Pile 100 Manure Pile 100 Manure Pile 100 Approved 1718 Parnyard 100 Yes Date 100 Pth of Setting 100 Pth of Setting 100 Pth of Setting 100 Aves 100 Type 100 Type 100 Pth of Setting 100 X X	Infected? Yes No gal. Type No X Yes No X hom 1651-1558	L 960'
Copy - Public Health Doyl of Public Health N = Sw Copy - Well Contractor B. c Copy - Well Owner	ILLINOIS DEPARTM WELL CONS' WELL CONS' I. Type of Well a. Dug Bored Curb material b. Driven Driv b. Driven Can d. Grout: Gray	 Distance to Nearest: A Building 10 FI Cess Pool 10 FI Cess Pool 70 FI Privy Septic Tank 50 Leaching Pit 50 Neul furnishes water for h A Date well completed 76 Manufacturer 70 FI Manufacturer 79 Yes 76 Manufacturer 10 Sealed? Yes 70 Manufacturer 10 Sealed? Yes 70 Man	9. Pump and Equipment Disi 9. Pump and Equipment Disi 10. Pressure Tank Size 10. Water Sample Submitted? FEMARKS:	Le rent de la contraction de

ц,

))

1DPH 4.065

WELL 4 2/6

	Drift	116	116		
	Lime	142	258		
-	Shale	135	393		
1	Dolo w/shale	20	413		
	Shale	75	488		
	Lime	25	513		
	Dolomite	320	833		
	Sand	250	1083		
	Lime with shal	e 70	1153		
4	Lime	30	1183		
.,e	Lime w/shale	55	1238		
	Lime	155	1393		
	Shale w/ sand	60	1453	2	
	Sand	185	1638		
	Sand w/shale	15	1653		
18	Shale	5	1658		

1940

.

WELL 4 3/6

WELL PRODUCTION TEST Wehling Well Works, Inc. COOK COUNTY VILLAGE OF LEMONT

WELL NO. 4

Owner: Location:

1

3

1

Date of Test: Length of Test: Aquifer: Date Drilled: Village of Lemont COK 37N 11E-29.1g 1170' S, 120' W of NEcor October 2-3, 1978, and November 1-2, 1978 24-hour tests before & after shooting Sandstone August 1978

WELL DATA

PUMPED WELL

 Well No:
 4

 Depth:
 1658'

 Driller:
 Wehling Well Works, Inc.

 Hole Record:
 20" 0-116', 19" 116-1153', 15" 1153-1653'

 Casing Record:
 20" 0-116', 16" 0-1150', cemented

Screen Record: --

Gravel Pack Record: ----

Pump & Power: Test turbine

Surface Elevation: 737' Measuring Point: Measuring Equipment: 855' airline, 8" meter Water Sample: Static Level: 733' below MP

Remarks: The well is north of Schultz St. and east of Huston St.

Well was shot from 1558'-1651' with 900 1b.

Drift	116		116
Lime	142		258
Shale	135		393
Dolo w/shale	20		413
Shale	75		488
Lime	25		513
Dolomite	320		833
Sand	250		1083
Lime with shal	e 70		1153
Lime	30		1183
Lime w/shale	55		1238
Lime	155		1393
Shale w/ sand	60		1453
Sand	185	20	1638
Sand w/shale	15		1653
Shale	5		1658

WELL 4 4/6

1

Well Test Data Sheet

tob Village of	Lemont	* 4
JUD		

Location...Huston St. - Lemont, Ill.

1 11

	Date testedOct2,1978
	Tested byJeff, Stan & Herman
Pump used:	Driver
	Column and shaft. 10"x3"x2-3/16"
	Bowis11 Stage
	Manufacturer Aurora
	Orifice or meter size

TIME	PIZOMETER OR METER (READING INCHES) READING	G. P. M.	AIR GAUGE READING (FEET)	PUMPING LEVEL	DRAWDOWN	TEMP.	REMARKS
9:30	68450100 o	0	115		0		START OF TEST
10:00	68468500	613	72	783	43	×	Dirty some sand
10:30	68494300	860	69	786	46		
11:00	68520000	856	67	788	48		
11:30	68545700 .	856 .	66	789	49		2
12:00	68571400	856	65	790	50		Trace Sand
12:30	68597100	856	65	790	50		Clearing
1:00	68622800	856	65	790	50		Clear
1:30	68648500	856	65	790	50		
00	68678500	1000	55	800	60		
2P30	68709400	1030	54	801	61		Clear Little Sand
3:00	68740200	1026	53	802	62		
3:30	68772400	1073	53	602	62		
4:00	68803400	1033	-53	802	62		
4:30	68834100	1023	53	802	62		
5:00	68865000	1030	53	802	62		
5:30	68896100	_1036	52	803	63		
6:00	68927000	1030	51	801	64		Sand test 0
6:30	68957900	1030	51	804	64		
7:00	68988900	_1033	51	801	64		
7:30	69020100	1040		804	61		а (йг
8:00	69051100	1033	51	804	64		
8:30	69082300	_1040	51	804	64		
-9:00	69113000	-1023	51		64;		
9:30	69143700	1023	51	804	64		
10:00	69174500	1026	51	804	64		
01	69205100	1030	51	801	61		

5/6

WELL 4

Well Test Data Sheet WELL 4 %

Job Village of Lemont
Location Huston St., Lemont, Ill.
Dia. of Well
Depth of well1658.
Length of airline
Non-pumping level740.

· · · · · · · · · · · ·

 $\langle k \rangle$

	Date tested 10-2-78
	Tested by.Jeff., Stan. & Herman
Pump used:	Driver
	Column and shaft 10 "x3" x2-3/16"
	Bowls
	ManufacturerAurora
	Orifice or meter size

	TIME	PIZOMETER OR METER (READING INCHES) READING	G. P. M.	AIR GAUGE READING (FCET)	PUMPING LEVEL	DRAWDOWN	TEMP.	REMARKS
	11:00	69231,200 0	1026 0	51	804	640		START OF TEST
a	11:30	69267300	1036	51	804	64		•
	12:00	69298600	1043	51	804	64	`	
	12:30	69329900	107,3		804	64		
	1:00	69360900	1033 .	_51	804	64		
i ai	_1:30	69391800	1030		804	64		1
	_2:00	691,22500	1023	51	804	64		
	_2:30	69453700	1040	51	804	64		
	10	691,81,900	- 1040	51	804	64		
1	30	69509800	830	59	796	56		
	1:00	69534700	-830	59	796	56		
	4:30	69559700	833	59	796	56		
	5:00	69584900	840	60	795	55		
	5:30	69610000	836	60	795	55		
	6:00	69634300	810	60 .	795	55		
	6:30	69659700	846	60	795	55		
	7:00	69685900	873	60	795	55		
24	7:30	69710700	826	60		55		
	8:00	69737000	-876	59	796	56		
	8:30	69762600	859	59	796	56		
	9:00	69788200	853	59	796	56		
	9:30	69813000	826	58	794	54		
	9:35			80	775			
	9:40			90	765			
đ	9:45	*1		92	761			
	10:15			95	760			
	11:00			98	757			
	11:30 12:00		15	100 101	755 754			
1	12:20			101	754			

Layne-Western

a division of Layne Christensen Company

PROFESSIONAL SERVICES FOR WATER SYSTEMS

Job		Village of Lemont			Village of Lemont Well No. 4 Da				Date Tes	ted	6/19/2007	6/19/2007		
Location Houston Street				- Tested B	y	lverson								
Dia. of	Well	16"					Driver		250HP 14" Type	H 460V				
Depth o	of Well		1658' Origi	nal			Column a	and Shaft	8" T&C					
Length	of Airline	922	feet		-		Bowls		13 Sta - 12 MQL	Bronze				
Non-Pu	imping Level	745	feet		-		Manufact	urer	Byron Jackson					
Orifice Size		8 × 6			-		Serial No		841-C-0071	1				
••••••					-		001101110	-						
	Piezometer		Air Gauge	Pumping		Disc	h. Pressure	Total	T					
Time	Reading (in.)	G.P.M.	Reading (ft)	Level	Drawdown	Psi.	Ft.	Pump. Hd.	AMPS	Remarks				
11:50		0	177	745	0	0								
11:55	21	725	121	801	56	75			341-343-341	Dirty, 1/8 Sand				
12:00	21	725	123	799	54	75			318-333-338	Cloudy				
12:10	21	725	123	799	54	75				Clearing				
12:20	20	717	120	802	57	75			319-334-337	Clear				
12:30	24	775	118	804	59	65			318-333-338					
12:45	24	775	118	804	59	65				No Sand				
1.00	25	791	118	804	59	55	1		327-337-339					
Tr J	24.5	783	118	804	50	55								
1.20	24.6	703	110	004	50	55			++					
1.30	24.5	105	442	004	09	45			1					
1.40	29.5	000	113	009	04	45				Clear				
2:00	29	852	112	810	65	45				Clear				
								Fir	nal Specific Capa	city = 13.1 GPM/FT				
				2										
	11													
		-												
							-							
_														
$-\bigcirc$														
		1					-							
					Dr	- 4				1007 Lomest				
					l Pag	e 1			001	IAOT LEMONT				

WELL INFORMATION - ROCK WELLS

Layne-Western Company, Inc.

Name of Job	Villa	721 West Illinois Aven ge of Lemont	nue • Aurora, Illinois (60506-2892 • Phone: 708/	⁸⁹⁷⁻⁶⁹⁴¹ 4/24/96 Date	
City	Lemont				IL State	
Well No.:	5	Drillers:	d Hall/Art 1	Leasure		
Well Location	2	2250 _{ft. (} S	_) and1320	ft. (W) of theNE	corner of
the¼ o	f Section _	31 _{, Twp.} 37	(), Rang	ge <u>11 (</u> E)Cook	County.
Otherwise locate	ed as	South of 127th	St. off Ti	mberlane Dr.		
Work Began:		1/24/96		Work Completed:	6/18/96	
Casing Record;						
Amount 128'	Dia. 24"	Wt. or Thickness • 500"	Material 	h joints fi	rom0	_to128'
177'	18″	.375"		welded joints f	rom	_to1175'
			witl	h joints fr	rom	_ to
			with	h joints fi	rom	_ to
Hole Record: 29"		inch from	0		128′	
22-3/4"		inch from	0'	- ^{to}	1175′	
•		inch from		to		
		inch from		_ ⁽⁰		
17″		_ inch from	1175′	_ to1	675' bottom	of hole
Cementing Reco	rd:2	24" pipe press	ure grouted	d with 140 sa	cks neat ceme	ent;
also	pressu	re grouted 18	" pipe - 11	13 sacks.		
Well Test Data:	Static Lev	el; pur	nping level 873	3' _{after} 16	hours pumping at 15	507
Length of test	16	hrs. See Well Test Da	ata Sheet Dated	June 18, 199	96	
harksWell	was sh	ot from 1565'	to 1665' e	very 10' with	100# shots	(1000
IDS. LOLA	L). We	ii unen air 1.	τιίεα του τ	OLAI OL 341 D	urs. to dever	Ob Merr.

Feet		Feet	Description
0	to	30	Clay
30	to	60	Sandy clay
60	to	105	Clay sand gravel
105	to	110	Broken lime
110	to	300	Lime
300	to	330	Red gummy shale
330	to	365	Green very gummy shale
365	to	400	Shale
400	to	425	Firmer shale
425	to	460	Shale and lime
460	to	500	Hard gray shale
500	to	505	Lime streak
505	to	510	Shale
510	to	850	Lime hard
850	to	980	Sand
980	to	985	Streaks of lime
985	to	990	Streaks of shale
990	to	1005	Sand
1005	to	1010	Streaks of lime sand shale
1010	to	1015	Shale
1015	to	1020	Sand lime shale
1020	to	1025	Limey sand and shale
1025	to	1045	Limey sand
1045	to	1055	Limey sand and trace of shale
1055	to	1065	Limey sand
1065	to	1080	Lime with some shale
1080	to	1095	Limey sand
1095	to	1110	Lime shale sand
1110	to	1130	Lime sand
1130	to	1155	Sandy lime with trace of shale

 $\frac{1}{\sqrt{2\pi}} = \frac{1}{2\sqrt{2}}$

WELL LOG

, ¹1, 12, 12

	Feet	Feet	Description	$\sim r^{2}$
	<u>1155</u> to	1170	Lime	
)		1415	Green limey with sand	
	1440 to	1480	Sandy shale	
	1480 to	1530	Sand and lime	
	1530 to	1535	Sand and shale	
2	1535 _{to}	1590	Sand and lime	
	1590 _{to}	1640	Sand and lime	
	1640 _{to}	1675	Sand	(#)
	to		4	
	to			
-	to			
Ð	to			
	to			
242	to			
)	to			
	to			
	to	_	X - 1	
A	to			
701-1	to			2 a.
	to			
	to			
	to		K	
	to			2
	to			
	to	n se		
	to			
-	to	· · · ·		
)	10			
	i0		2	
	to			

Layne-Western

a division of Layne Christensen Company

PROFESSIONAL SERVICES FOR WATER SYSTEMS

Job	Village of Lemont			Well No.	5	Date Te	sted	2/20/2006	
Location	S. 127th be	hind school				Tested I	Ву	Senne	
Dia. of We	IE .	18"		ц.		Driver	350 BJ, 17	" H-2300 volt	
Depth of W	/ell	1631	Feet			Column	and Shaft	8" T&C	
Length of A	Airline	954	Feet			Bowls	14 stage -	13MQ/12MQL	. brz.
Non-Pump	ing Level	789	Feet			Manufad	cturer	Byron Jackson	
Orifice Size	Э.	8 x 6		Page 1 of	1	Serial N	o .	96-NR-1259	
Time	Piezometer Reading (in.)	G.P.M.	Air Gauge Reading (feet)	Pumping Level	Drawdown	Disch. P Lbs.	ressure Ft.	AMPS	Remarks
		0	165	789	0	At Hydra	ant Inside		
10:20	29	852	138	816	27	62	67	66-66-66	Black
10:30	29	*852	132	822	33	62	67		Black
10:40	29	852	128	826	37	62	67	68-68-68	Cloudy
10:50	29	852	126	828	39	62	67		Clear
								5	
1:00	30	*867	124	830	41	50	55	66-66-66	Clear
11:10	30	867	121	833	44	50			125' transducer
11:20	30	867	120	834	45	50	55		Clear
11:30	30	867	119	835	46	50		66-66-66	
			12						
11:40	33	909	118	836	47	40		66-66-66	
11:50	33	909	115	839	50	40			
12:00	33	909	113	841	52	40			
12:10	33	909	112	842	53	4			
	40.5	1007	112	842	53	4			
Into syste	m	1175	123 (transduce	ər)		20			
			(9						
* At 10:30	Dam and 11:	00am: Meter	indicated 1050	gpm.					

Layne-Western

a division of Layne Christensen Company

PROFESSIONAL SERVICES FOR WATER SYSTEMS

721 West Illinois Avenue • Aurora, Illinois 60506-2892 • Phone: 630/897-6941

Vi Job	llage of	Lemont		Well No	5 r)ato Tosto	Jul	y 1, 1997	L, 1997 H 2300V F&C 13MQ/12MQI. Dn Jackson R125901 Total Pumping Head Amps					
Location	South c	of 127th Beh	ind Schoo	1	L	astad By	Roge	ers						
Dia. of W	Vell18"				C	Driver 3	50HP :	17" H 2300)V					
Depth of	Well	167	5_Ft	Pump Used:	C	Column and	d Shaft <u>8</u>	" Т&С						
Length o	of Airline		<u>4_Ft.</u>		Ε	Bowls <u>1</u>	4-stag	<u>ge 13MQ/12</u>	2MQI					
Non-Pun	nping Level	78	<u>9 Ft</u>		Ν	lanufactur	erB	yron Jacks	son_					
Orifice S	ize	8"x6	**		S	Serial No.	9	6NR125901						
Time	Piezometer Reading (in.)	G.P.M.	Air Gauge Reading (feet)	Pumping Level	Drawdown	Disch. Lbs.	Pressure Feet	Total Pumping Head	Remarks					
		0	165					Amps						
09:40	Start						-							
09:45	33.5	916	140	814	25	75	r	74/74/77	Clear					
10:00	32.5	902	132	822	33	73								
10.10	32.5	902	130	824	35	73*	93**							
10:20	38.5	982	127	827	38	50	67	77/78/82						
10:30	38.5	982	124	830	41	50	67	76/79/80	No Sand					
10:40	38.5	982	124	830	41	50		76/78/82						
10:50	41.5	1020	120	834	45	35	53	76/78/82	No Sand					
11:00	41.5	1020	120	834	45	35	53	76/78/83						
11:10	41.5	1020	120	834	45	35	53	76/79/82						
			3			1	24							
11:20	48	1096	115	839	50	4	23.5	76/78/82						
11:30	48	1096	114	840	51	4	23.5	76/78/82						
11:40	48	1096	113	841	52	4	23.5	76/78/82	No Sand					
								FLA=89						
Note: A	irline tra	nsducer rea	dings l'-:	2' differ	ent tha	n airli	ne							
flowmete	r 2-6 gpm	lower than	orifice p:	pe.										
*Pressure	e at hydra	nt.												
* Jessu:	re inside	pumphouse.												
TESTW335.WK4														

VOLT

WELL INFORMATION - ROCK WELLS

Layne®-Western a division of Layne Christensen Company

a division of Layne Christensen Company — PROFESSIONAL SERVICES FOR WATER SYSTEMS —

Name Of Job	illage of Len	nont					_	Da	ite -	October 18, 2	2004	
City Lemont								Sta	ate _	ILLINOIS		
Well No. 6		Drillers	Alward	:								
Well Location	1450	f	t. () and	2450		ft. (<u>S</u>) of the	NE		corner of
the 1/	4 of Section	27	,Twp37	(N), Rar	nge		(<u> </u>)Cook		County
Otherwise located a	s North s	ide of Mc	Carthy road,	just eas	t of Rt.	171 (Arc	her	Avenue)				
Work Began: 7-2	27-04					Work Con	npiet	ed: 10-1	8-04			
Casing Record: Amount	Dia.	Wt. o	Thickness		Material							
159'	24"		0.500"	_Steel		v	vith	Welded	joints fro	om0	to	159'
1188'	18"		0.375"	Steel		v	vith	Welded	joints fro	om <u>+2</u>	to	1186'
		÷				v	vith		joints fro	om	to	
						V	with		joints fro)m	to	
Hole Record:				() 					-			
	29	inch from				0	to	159'				
	22 ¾	inch from				159'	to	1186'			_	
		inch from		æ			to					
		inch from	5				to					
	17	inch from) -			1186'	to	1665'			t	ottom of hole
Cementing Record:	229 sac	ks neat ce	ement outside	e 24" an	d 1741	sacks n	- eat	cement be	tween 1	8" and 24" cas	sings	to 1186'
Well Test Data: Sta	tic Level	723'	; pump	ing level	853'	afte	er —	16	hours pu	mping at 106	2	g.p.m.
Length of test		_16	hrs. See	Well Tes	t Data Sh	eet Dated	3	October	14, 2004			
arks:Final s	pecific capa	city = 8.2	GPM/Ft.								_	
										No. 500		
Layne Job No	9216T		IEPA Well Pe	ermit No.:	0906	5-FY200	4	Chicagol	and Map	UNU. 520	30 44	19204
.W-96				SEE	OTHER S	SIDE					.10	JZZU4

WELL LOG

F	eet		Feet	Description
)	0	to	150	Glacial drift
	150	to	170	Lime
	17	to	303	White lime
	303	to	455	Gray bluish shale with lime streaks
	455	to	680	Lime and shale mix
- 	680	to	691	Lime and sand mix
	691	to	835	Gray lime
	835	to	855	Lime
	855	to	1090	Sand
	1090	to	1120	Lime, sand and chert
	1120	to	1130	Gray shale
<u></u> *	1130	to	1135	Fractures lime with sand and shale
	1135	to	1175	Lime with sand, green shale
	1175	to	1195	Lime 60% - shale 40%
)	1195	to	1365	Dark gray lime
	1365	to	1475	Dark gray sandy lime
	1475	to	1485	Dark gray sandy lime with white sandstone
	1485	to	1575	White sandstone
	1575	to	1665	White sandstone
		to		
).		to		
		to		A

(a	une		WEL	L TEST [DATA SHE	ET				
		Lay	ne Ch	rister	nsen (Com	pan	у		
				ayne-Weste	rn Division	n				
	<u></u>	PR(OFESSIONA	L SERVICE	S FOR WA	TER SY	STEMS			
	100 m	229 West India	na Avenue	Beecher,	Illinois 6040	•1 • Ph	one: 708	3/946/2244		
Job	Lem	mt,IL #(0		Well No		Date Ter	sted <i>B~18-</i>	2021	
Locati	on	•			6		Tested E	By Gilchrig	đ.	
Dia. o	f Well				F		Drive			
Depth	of Well				Pump Use	ed:	Column	and Shaft		
Lengt	h of Airline	1093			on		Bowls _			
Non-F	umping Leve	711			Coloral		Manufac	cturer		
Orifice	e Size	Bx6			80/70/0	-0	Serial N	0		
Time	Piezometer Reading (in.)	G.P.M.	Air Gauge Reading (feet)	Pumping Level	Drawdown	Disch. I Lbs.	Pressure Feet	Total Pumping Head	Remarks	5
			382							
1135	38	976	245			во		89-89-91	BLACK	
1145	40	1001	240			60		88-88-90	Cloupy	
	. 1.1	inte	22.					20		
.)0	99 42	(050	2.20			65		59-90-91	CLEAR	
1200	12.5	1044	992			65		84-89- 11	CLEAR	tRAil
·		1040 Gen	thru	TRANS	FORMER					
÷		Gen thr	U BUILO	ing						
· · · · · · · · · · · · · · · · · · ·			382							
								-A-		
								1	140	
\bigcirc										
L-1073 6/05										

Layne Christensen Company

PROFESSIONAL SERVICES FOR WATER SYSTEMS

Jop	Village of Lemont	Well No. 6	Date Tested	1/18/2012
Location	McCarthy Road		Tested By	Warren / Carson
Dia. of Well	18"		Driver	350 HP BJ 2300 Volt
Depth of Well	1665 ft.		Column & Shaft	8" T & C
Length of Airline	901 ft.		Bowls	14 Stg-12RKEH(13)H(1) All Brnz
Static Level	701 ft.		Manufacturer	Byron Jackson / Layne
Orifice Size	6 x 5		Serial No.	55-10-1290

Time	Diez (in)	GPM	Air Gauge	Pumping	Drawdown	Dis. F	Press.	Total		Pomorko
Time	1 162. (11)	0.F.IM.	200	701		0	г.	neau		Remains
10.20	20.0	557	100	801	100	80			60	Clear
10:20	22.0	584	100	801	100	80			70	Clear
10:40	22.0	584	100	801	100	80			- 10	Clear
10.50	22.0	584	100	801	100	80			70	Clear
11:00	22.0	653	00	911	110	70			10	Clear
11.00	26.5	641	90	<u> </u>	110	70			74	Clear
20	20.5	641	90	011	110	70			/4	
11:20	20.5	641	90	011	110	70			74	
11:40	20.5	676	90	011	100	70			/4	
11.40	29.5	676	00	021	120	60			70	
11:50	29.5	0/0	80	821	120	60			76	01
12:00	29.5	0/0	80	821	120	60			/6	Clear
									ELA 00	
									FLA = 89	
									F	inal Specific Cap'y = 5.6GPM/ft.
								-		
								-		
1										

Layne-Western

a division of Layne Christensen Company

_ PROFESSIONAL SERVICES FOR WATER SYSTEMS

721 West Illinois Avenue, Aurora, Illinois 60506-2892 Telephone 630/897-6941 229 West Indiana Avenue, Beecher, Illinois 60401 Telephone 708/946-2244

Job	Village of Lemont	Well No.	6	Date T
Location	McCarthy Rd.			Tested
Dia. of Well	18"			Driver
Depth of Well	1665 ft.			Colum
Length of Airline	901 ft.			Bowls
Non-Pump Level	705 ft.			Manuf
Orifice Size	8 x 6			Serial i

 Tested
 4/29/2009

 ed By
 Poppen

 r
 350HP BJ 2300V

 mn & Shaft
 8" T&C

 s
 14 stg-12RKEH(13)H(1) bronze

 ifacturer
 Byron Jackson/Layne

 I No.
 55-10-1290

			Air Gauge	Pumping		Dis. F	Press.	Total		
Time	Piez. (in)	G.P.M.	(ft)	Level	Drawdown	Lbs.	Ft.	Head	AMPS	Remarks
		0	196	705	0	0				
8:45	25.0	791	122	779	74	80				Dirty
8:50	26.5	815	119	782	·· 77	80			90-90-87	Clearing
9:00	26.5	815	117	784	79	80				32
9:10	26.5	815	115	786	81	80	7			Clear
<u>∽.</u> 20	29.0	852	106	795	90	70				1/16" Silt/sand
	29.5	860	104	797	92	70			94-94-91	Clear
9:40	29.5	860	104	797	92	70				
			<u>i</u> e							
9:50	33.5	916	99	802	97	60				Clear
10:00	33.5	916	97	804	99	60				
10:10	33.5	916	96	805	100	60	M		99-99-95	Trace of sand/silt
10:20	33.5	916	95	806	101	60	3			
										5b.P=9.1
									FLA = 89	
2350(±) \	/olts per	panel.				1990.				
				à						
							405			
									18	
								3		
								1		tar tar
							_		· · · · ·	
5										
			°							

Layne-Western

a division of Layne Christensen Company

PROFESSIONAL SERVICES FOR WATER SYSTEMS _____

Job	Village of Lemont	Well No.	6	Date Tested	6/15/2006	
Location	McCarthy Road			Tested By	John Geltz	
Dia. of Well	18"			Driver	350HP - 2300	
Depth of Well	1665 Feet			Column and Shaft	8" T&C	
Length of Airline	910 Feet			Bowls	17 Stage - 12EMM	
Non-Pumping Level	707 Feet			Manufacturer	Flowserve	
Orifice Size	8x6	18		Serial No.	55-10-1290	

	Piezometer		Air Gauge	Pumping		Disch	. Pressure	Total		
Time	Reading (in.)	G.P.M.	Reading (ft)	Level	Drawdown	Psi.	Ft.	Pump. Hd.	AMPS	Remarks
				Average Ru	nning Volts	s=2375				
		0	203	707	0					
9:00	36.5	956	103	807	100	80			89-84-86	Sand=1/4"+
9:15	36.5	956	98	812	105	80			87-83-84	Clear-Sand=1/16"+
9:30	36	950	93	817	110	80			Clear	V.slight Sand Trace
9:45	37.5	969	91	818	111	70			88-83-84	Above
10:00	37	963	90	820	113	70				Clear
15	37	963	90	820	113	70			87-83-84	Clear-No Sand
10.30	39	988	84	826	119	60			87-83-84	2
10:45	38.5	982	82	828	121	60				Clear-No Sand
11:00	38.5	982	81	829	122	60			87-83-84	
									FLA=89	
OFFICI	AL STARTU	P								
								4		
									2	4
	Power suppli	ed to bui	lding is 480	then stepped	d up throug	h trans	former to	2300		
-										
	6/14/06 Com	nEd Supp	oly=494 Volt	ts	÷)					
	6/15/06 Com	Ed Supp	ly=484 Volts	3						